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ABSTRACT

In order to function autonomously in the real world a mobile robot must first be able

to sense the boundaries of it's operating space. Once the enclosing features and/or obstacles

have been sensed they must be interpreted and represented in some way meaningful to the

robot's controlling algorithms. The objective of this work is the development of a system

of ultrasonic sensors, or sonars, for the mobile robot YAMABICO- 11 at the Naval

Postgraduate School, and the implementation of a user friendly set of sonar language

functions for the robot's control language MML. The sonar hardware includes twelve

transducer pairs, their drivers and a bus mounted control card. The sonar control system

operates autonomously under direction of the robot's central processor.Extraction of linear

features is accomplished by the use of a least-square-fit algorithm of cartesian coordinate

pairs to a parametric representation of the including line segment.
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I. INTRODUCTION

A. Motivation For Sonar Development

Yamabico- 11 is one of two mobile robots available for research at the Naval

Postgraduate School, the other being the autonomous underwater vehicle of the AUV

research group[ 13]. Yamabico is perhaps better suited for use in basic robotic coursework

for three reasons. First, it rolls in the corridor of Spanagel Hall at NPS and doesn't require

a team of people and a swimming pool to run a mission. Second, it operates holonomically

in two dimensions, greatly reducing the complexity of it's motion and the related control

problem. This allows the student to concentrate more on the basics of sensor employment

and path planning. Third, a high level language (Mobile robot Motion control Language, or

MML) already exists for the student to use for programming the robot's motion [9,10].

A set of ultrasonic sonar transducers already existed on Yamabico, and had indeed

already been used in research regarding precision navigation [7,8]. A set of functions had

been written in C code to utilize the sonars and record data from them. However, when we

attempted to use the existing sonar system, we found that it was both hard to understand

and extremely fragile. Indeed, we never managed any success with the existing system,

failing on several attempts to acquire any usable data. At this point, the decision was made

to pursue the design and implementation of a reliable and easily used sonar system for

Yamabico.

B. Functional Goals of the Sonar System

Sensors can be used in two cognitively different ways. First, they provide information

about the surrounding environment about which the perceiving entity was previously

unaware. In the robotic world we are considering, this might translate to the detection of

previously unmapped obstacles in the robot's path. These sensor detections are unplanned

events whose occurrence is outside the control of the robot. Their detection. however, can

be strongly influenced by the scanning routines employed by the robot and by inference

methods employed to determine the probability of such events.
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On the other hand, sensors can be employed to verify conditions in the surrounding

environment about which the robot is already aware. For example, if the robot is directed

to traverse a corridor it is aware, either explicitly or implicitly, that there are two walls

parallel to it's intended direction of travel. The explicit knowledge may take the form of a

map of the building held by the robot, while the implicit knowledge is inherent in the

concept of "corridor". In either event, the robot knows that it may measure the environment

and compare the result of those measurements against it's internal representation of the

environment in order to assess it's situation.

Our goal is to develop a sonar system which provides the user with the functionality

to explore and use the environment in the manner described above. It would be an easy

matter to simply say "look everywhere all the time and record everything you see" in order

to provide a complete and continuous catalog of Yamabico's environment. The

computational resources necessary to accomplish such a task, however, far exceed the

capabilities of our machine. We must be much more definitive about where we look, when

we look and what we do with the data once we've sensed it. From another perspective, the

sensory are a basic task for the robot, just as are the locomotion functions for physically

moving itself about. We wish to keep these basic functions on the same level of complexity,

providing a homogenous environment for the eventual user of the robot control language.

For this reason, complex actions such as an automatic safety sweep of the surrounding area

are left to higher level implementations which will use the more basic functions provided

here.

C. Design Goals

Our basic design goals may be described as follows:

1) Provide basic sonar data (range and position) with the minimum delay
possible.

2) Provide a method of linear feature extraction for the description of the robot's
environment (presumed, for our purposes, to be orthogonal).

3) Minimize the use of CPU time as much as possible.
4) Maximize the autonomy of the sonar system, thus distributing the processing

to some degree.
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6) Reduce the complexity of the hardware system in order to improve it's
reliability and speed.

5) Provide a user friendly interface in keeping with existing MML functions.

D. Thesis Organization

Subsequent chapters of this work will address our hardware and software design in

response to the design goals stated above. Chapter II is devoted to a review of other work

related to the implementation of sonars aboard mobile robots.

Chapter III presents the development of the hardware for our project. It begins with a

review of what existed originally and traces it's evolution into the new architecture.

Chapter IV discusses the extraction of linear features from the environment by means of a

least squares fit algorithm, and goes on to describe the means by which data points are

selected and filtered for application to the algorithm. Chapter V presents the high level

functionality of the sonar control language, the user interface. Also discussed here are the

data structures the user needs to be aware of in order to properly use the functions. The

background functions which implement the user interface are discussed in Chapter VI

along with data structures which are normally hidden from the user. Chapter VII presents

the results of testing of the language, including some actual missions run in the corridor and

the data returned. Conclusions and avenues for future work are presented in Chapter VIII.

E. Acknowledgment

We acknowledge the invaluable contribution of Mike Williams of the NPS Computer

Science Department staff to the design and construction of the sonar system hardware and

firmware currently employed aboard Yamabico.
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II. RELATED WORK

The bulk of current research in mobile robot sensors is directed towards the

implementation of machine vision and tactile sensors. Ultrasonic rangefinding, however, is

attractive for it's low cost and relatively simple implementation, making it an excellent

research tool for educational institutes. It is also invaluable in environments where optical

sensors are occluded (for example, aboard submersible robots).

In a paper published in 1985, Crowley describes a sonar based modeling and

navigating system for the IMP mobile robot at Carnegie-Mellon [3]. The proposed sonar

system utilizes one transducer with a beam spread of approximately 5 degrees. The

transducer is to be rotated in steps of 3 degrees, completing a full revolution in about 10

seconds. The range of the sensor is reported as 25.6 feet with a resolution of 0.10 feet.

Crowley develops his sensor model by first converting his range data into cartesian

coordinates and then searching for "break" points. Breaks are defined as points where the

distance between adjacent coordinate pairs differed by more than a preset constant. The

resulting sets of points are fitted to line segments using a recursive routine which compares

a constant to the perpendicular distance from individual points to a line drawn between the

set's endpoints. The resulting line segments are then linked together to form the world

model. Drumheller also conducted research with a single sonar transducer [4]. In his work

a Polaroid transducer is mounted at an altitude of 5.5 feet and is rotated in 3.6 degree

increments, thus a complete revolution is made in 100 steps. The greater altitude of the

sensor over the IMP (which held the sensor at 31 inches above the floor) served to give

Drumheller's machine a view of the room vice a view of the furnishings. Drumheller then

extracted line segments from the data in using an iterative endpoint fit. With the segmented

representation of the room Drumheller performed pattern matching to determine the

sonar's (and thus an attached robot's) location and orientation in the room.

Elfes has conducted research in sonar based mapping and navigation at Carnegie-

Mellon [5]. His work is based on the Neptune mobile robot, a three wheel device with a
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circular array of 24 Polaroid ultrasonic transducers. The transducers are separated at an

angle of 15 degrees and are at a height of 31 inches above the ground. The Polaroid

transducers operate at a frequency of approximately 55 KHz and have a beamwidth across

the main lobe of roughly 30 degrees. The machine is not autonomous, having a Z80

microprocessor aboard which simply manages the firing of the transducers. The collected

data is transferred via a serial link to a VAX mainframe where the interpretation of the data

takes place. The focus of Elfes' research is the development of an occupation probability

map for an area based on the accumulation of unique views of individual regions. As more

views of a region (either from different sonars or from the same sonar at different positions)

return an echo from that region the probability of that region being occupied goes up. Also,

the resolution of the occupancy map improves as views from different points are collected.

Elfes relates some basic problems with the use of ultrasonic sensors, particularly:

- sensitivity sharply declines when the axis of the sonar beam departs from the
normal of the reflecting surface

- sonar beams suffer from specularity, or the reflection of the beam between
multiple surfaces, causing false range readings

- the relatively wide beamwidth of the sonar beam imposes only a loose
constraint on the position of the detected object

Multiple transducer sonar on an autonomous mobile robot is one of the achievements

of the HERMIES-IIB robot assembled at the Oak Ridge National Laboratory[l].

HERMIES-IIB mounts 25 Polaroid transducers. 24 of these are mounted as six 2x2 arrays

and the remaining sensor is mounted singly as a collision avoidance system. Five of the six

arrays are mounted in a rotatable, semi-circular ring on top of the robot; the sixth is

mounted on a tiltable platform attached to the rotating ring. The advantage of the 2x2 array

organization of the transducers is the reduction of the sonar beamwidth by virtue of phased

array operation. Reduced beam width means, of course, enhanced resolution of object

location. HERMIES-IIB is a major improvement in mobile computing power over earlier

autonomous robots. It boasts an IBM AT microcomputer with both hard and floppy disk

drives and 2 Mbytes of RAM. The IBM is host to an eight node NCUBE parallel processing
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system which executes the navigation and image processing programs (the robot also

carries two cameras, in addition to the sonars). The IBM computer communicates to a VME

rack by way of an eight megabaud parallel link. The VME rack is loaded with dedicated

processors for the operation of the sonar subsystem, motion control, manipulators and other

ancillary functions. The application of the sensor systems is interesting in that the sonar

system is used for the purpose of navigation, and the vision system for interpreting and

operating various mechanical systems and control panels.

Crowley expands his earlier work into systems with multiple sensors [3]. He makes

strides in improving the time response of the sonar system to the user by his method of

maintaining a "sonar horizon". He utilizes a segment finding method similar to that used in

his earlier work, with the advantage that multiple points can be found simultaneously with

multiple sensors. The line segments composing the local model are expressed in parametric

terms, facilitating later matching with a world map.

The theoretical works by Kuc [11,121 are of interest in that they present the physical

basis for the operation of the ultrasonic sensors commonly used aboard mobile robots. Of

particular interest is his development of a simulation model, for in that development lies

some understanding of peculiar range data distribution at comers and edges that had been

observed in previous work on Yamabico.

Early work on our platform, Yamabico, was conducted by Hartman, Kanayama and

Smith [7]. In this work, the least squaresfit method for segment finding is explored and the

sonar system used to facilitate precise navigation. The least squares fit algorithm is

described in greater detail in a later work by Kanayama and Noguchi [81 and it's application

to the NPS AUV project is detailed by Floyd, Kanayama and Magrino in [6].
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III. HARDWARE DEVELOPMENT

As pointed out in the introductory chapter, the existing sonar of Yamabico had failed.

A functional, reliable sonar system is essential to the continuing research which used

Yamabico as a test platform. Evaluation of the current system, our sensor needs and our

fabrication abilities led us to the conclusion that a newly designed sonar to replace the

existing system was the correct approach. Our design parameters included:

- direct bus interface for data transfer
- reduction of number of circuit cards to one (other than drivers)
- fast enough to reduce positional uncertainty to less than 1 cm.
- use of existing transducers and drivers
- ability to choose between polled and interrupt operation

In this chapter we will first briefly describe the existing sonar system of Yamabico.

We will then go on to describe the new control system hardware and it's method of

operation.

A. Existing Sonar System of Yamabico-li

Yamabico employs twelve ultrasonic sensors, or sonars, operating at 40 kilohertz and

distributed around the periphery of the robot as shown in Figure 3.1 below.

0 3

1

Figure 3.1. Sensor Location
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Each sensor is actually a pair of transducers, one to transmit the ultrasonic pulse and

another to receive the echo. These sonar transducers are connected to three transmit/receive

boards which control four sonars each. These boards amplify the oscillator signal provided

by the 6809 processor and apply it to the sonar transmitters, and amplify the received echo

to provide an output pulse at TTL levels. The three transmit/receive boards are in turn

controlled by a 6809 processor board which times the output signals, gathers the return

pulse and forwards the data. The data stream is routed via a ttl/rs232 converter to a serial

input / output card, and thence finally to the VME bus and the central processor (see Figure

3.2 below).

0

2 > -T/R ,6809

8 >'Board PI-oc.

4 >,14contrt seilIOcr

5 -- TIR 6809

6 > Board proc.

rs232

3 T / R -0 4 0 6 8 0 9 6 8 2
9 >- Board proc. processor

10 -

Figure 3.2. Existing Sonar Hardware Architecture

The data for an individual sonar is composed by the 6809 processor and transmitted to

the 68020 central processor in a series of four one byte serial transfers, each driven by a

separate interrupt. The interrupt handler in the central processor concatenates the single

bytes into one long word, which it then breaks up into the actual range data and the sonar

number. In addition, the interrupt handler records the robots position in x, y and theta with
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the transfer of every byte, even though only the values recorded with the transfer of the last

byte are placed on the stack for further use. When four bytes have been collected, the

interrupt handler places the data on the stack and calls a C routine to update the sonar table,

and then calls another C routine to perform linear fitting and other functions upon the data.

When the system failed to operate, an evaluation was made to determine what the

problem might be. As a result of that evaluation, these conclusions were reached:

- the network of circuit cards and cables was far more complex than necessary,
contributing to the frailty of the system.

- if the system worked, the interrupt driven byte-wise transfer of data would
occupy an inordinate amount of processor time, causing system delays.

- existing software was poorly documented and relatively "unfriendly".

A design group consisting of Yutaka Kanayama, Sol Sherfey and Mike Williams was

formed and determined that the construction and implementation of a new sonar system

was both called for and within the capabilities of the group and the facilities available to

them.

B. New System Design

The design goals were as follows:

- retain the existing transducers and their driver/amplifiers.
- reduce the circuitry between the driver/amplifiers to only one card.
- make sonar data immediately available to the bus, vice following a complex,

circuitous (i.e. slow) serial path.
- reduce sampling time to a minimum.
- allow for either interrupt driven or polled operation
- improve coding to process data more efficiently and provide the user with a

more intuitive programming environment.

The software aspects of the project are detailed in the Software Implementation

chapter. In the remainder of this section we will discuss the hardware/firmware aspects of

the project. A block diagram of the new sonar system is provided in Figure 3.3.



11

4 T/R L
7 >- Board D ata 3  M B

5 2

Sonar Control
3 T/R Daughtercard Central

9 Board __processor

10 3

VME Mothercard

Figure 3.3. New Sonar Hardware Architecture

1. Sonar Grouping

In order to reduce sampling time the sonars are operated in logical groups of four.

The sonars of a logical group are all pulsed simultaneously and thus reduce the sampling

time by a factor of four as compared to individual firing of the sonars. The sonars of each

logical group are oriented in such a way as to:

- prevent mutual interference
- provide a "look" in all four directions from each group
- present a similar aspect from each sonar during a rotational scan

Thus, logical group 0 consists of sonars 0, 2, 5 and 7 (see Figure 1); group 1 of sonars

1, 3, 4 and 6; group 2 of sonars 8, 9, 10 and 11; and group 3 is a "virtual" group which

consists of four permanent test values. The axis of each sonar is oriented at 90 degree angles
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from it's neighbors and the sonars of a group are distributed symmetrically about the

robot's axis of rotation.

In addition to being logically grouped, the sonars are also physically grouped. The

physical grouping of the sonars is made to distribute the electrical load over the driver

boards evenly and thus minimize any electrical transients associated with operation of the

sonar. The physical grouping connects sonars 0, 2, 8 and 11 to driver/amplifier board 1;

sonars 4, 5, 6 and 7 to board 2; and sonars 1, 3, 9 and 10 to board 3. The reader will note

that pairs of sonars from logical groups are assigned to physical groups, for example, sonars

0 and 2 from logical group 0 are assigned to physical group (driver/amplifier board) 1. To

further reduce any power transients associated with sonar operation, the paired sonars are

pulsed in opposition to one another, as shown in Figure 3.4.

2. Pulse Control

Initial design of the control circuitry was based on two primary parameters: (1) a

desired maximum range of 400 cm. and (2) a pulse width of 1 msec. Assuming a speed of

sound in air, at sea level, of 340 meters/second we may calculate a round-trip time:

400 cm.
round trip time = 34000 cm./sec. x 2 = 23.53 msec. (Eq 3.1)

This round trip time is the period during which a valid echo may be received and is

referred to as the receive gate. This interval is rounded up to 24 msec. and is derived by

division of the sonar system's 2 MHz clock to ensure that the receiver is not falsely

triggered by a direct path reception from it's adjacent transmitter, we opt to disable the

receiver until the transmit pulse is complete. This will have the disadvantage of setting a

minimum range equal to half the distance sound would travel in the time of a transmit pulse.

minimum range = 34000 cm./sec. x 1 msec. x 0.5 = 17 cm. (Eq 3.2)

This minimum range lies approximately 9 cm. outside the periphery of the robot. In

order to allow the measurement of objects up to the periphery of the robot, the pulse width

was decreased to 0.5 msec thus reducing the minimum range to 8.5 cm.

11



on

sonar a

off

on

sonar b

off

I I I I I I I I I I v

0 25 50 75 100 125 150 175 microseconds

Figure 3.4. Opposed Sensor Firing

In actual practice, the minimum range is set by firmware to 9.6 cm., the additional

distance being due to some time being allotted for switching and settling in the circuitry.

All sonars of a logical group are pulsed simultaneously. Which groups are fired is

determined by the value of the corresponding bit in the command register of the sonar

control board, which in turn is set by the user with an MML function. Hence, if bit 2 is set

to 1 then group 2 sonars will be pulsed. If more than one group is selected to be pulsed, the

sonar control board will pulse the first group on the list, and when the data from that pulse

has been read from the fourth data register the sonar control board will proceed to the next

group and pulse it, and so on in round robin fashion. Groups with their control bit set to 0

will not be pulsed. The sampling rate can thus be as high as 41 Hz with only one group

enabled (based on a 24 msec. read gate as determined in equation 3.1) and will be halved

for each additional group enabled. At a nominal robot speed of 30 cm/sec this sampling rate

could provide an updated range within 0.75 cm. of travel, exceeding our desired positional

accuracy of I cm. Of course, real performance will be affected by any delay in reading the
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data registers due to other demands on the central processor (processing the sonar data,

controlling motion, etc.).

3. Range Finding

There are four 16 bit data registers on the sonar control board, one for each of the

four sonars in a logical group. When the transmit pulse is sent to the driver/amplifier boards

a counter is started which increments each of the data registers every 6 microseconds. This

time period is equivalent to a range of 1.02 millimeter:

range = 340000 mm/sec x 6 microsec x 0.5 = 1.02 mm (Eq 3.3)

The incrementation of a particular data register continues until an echo is received

or the range gate times out. The first 12 bits of the data register are allotted for range

accumulation, thus allowing for a maximum range of 4.177 meters (4095 x 1.02 mm). If

the range gate should time out before an echo is received, the high bit of the over ranged

sonar's data register is set to 1. This is the "overrange" bit and is used to signal the ensuing

software that no echo was received. Bits 12, 13 and 14 of the data registers are not used.

Wher the ranging cycle is complete, the appropriate group number is written into bits 4 and

5 of the status register and the "ready" bit, bit 7 of the status register, is set to 1. The ready

bit is used as a flag when operating in the polled mode; i.e. without interrupts.

4. Interrupt Control

The sonar control board is actually a daughtercard which rides on a VME bus

mothercard. The mothercard carries address decoders, bus drivers and interrupt control

circuitry in the Bus Interface Module (BIM).

When the sonar has completed a ranging cycle an interrupt request is provided to

the BIM. The BIM's control register holds information which determines whether an

interrupt is to be generated or not, and if so which interrupt level is to be generated.

Presuming an interrupt is generated, when the correct acknowledgment returns on the

address lines the BIM's vector register provides the vector table entry where the central

processor may find the vector to the interrupt handler. The correct interrupt level, the
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interrupt enable bit and interrupt vector are loaded to the BIM during software

initialization.

S. Data Transfer

Each of the data registers is individually addressed on the VME bus by a VME

short address, as is the status register. Transferral of the data is extremely straightforward.

The interrupt handler simply reads the correct register, masks out the unwanted bits and

writes the data to the stack. When the last data register is read, the sonar system resets the

data registers and commences a ranging cycle on the next sonar group in it's round robin.

The system will continue to operate autonomously until all the sonars are disabled.
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IV. LINEAR FEATURE EXTRACTION

In addition to simple range and point position data, we desire the sonar system to

develop representations of linear features in an orthogonal world. To do so we must

provide some method for recognizing sets of data points which form the linear feature and

a method for finding and describing the line segment that best fits that set of data points.

This is accomplished in reverse fashion, i.e. we presume the data we are receiving belongs

to such a set and continuously modify a descriptive line segment to a best fit of the data

using a least squares fitting algorithm. This line segment continues to grow until the

incoming data or certain measures of the line segment indicate that the line segment should

be ended and a new one started. We use an implementation of least squares fitting described

by Kanayama and Noguchi [8].

A. Least Squares Fitting

Suppose we have collected n consecutive valid data points in a local coordinate

system, (pl,..., p,,), where pi = (xi, yi) for i = 1 ,...,n. We obtain the moments mk of the set of

points

n

mjk x'jiyi (O:5j, k: <2, and j + k:5 2) (Eq 4.1)
i= 1

Notice that moo = n. The centroid C is given by

C i 10 M01 ) = . ) (Eq4.2),Moo Moo Y

The secondary moments around the centroid are given by

n 2
M - (X,-.')= 2 0 - M (Eq 4.3)

i= 1

n 
(i 1n- (Eq 4.4)ml- I (Xi-Rd) (Yi - 9y) = ro I , I moo
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(Y-jy) 2 = (Eq 4.5)
i= 1

We adopt the parametric representation (r, a) of a line with constants r and ax. If a

point p = (x,y) satisfies an equation

r = xcosa+ysina (-x/2<a 5n/2) (Eq 4.6)

then the point p is on a line L whose normal has an orientation ax and whose distance from

the origin is r (Figure 4.1). This method has an advantage in expressing lines that are

perpendicular to the X axis. The point-slope method, where y = mx + b, is incapable of

representing such a case (m = -0, b is undefined).

L

p = (xi, y)

residual

Origin X

Figure 4.1. Representation of a line L using r and a.

The residual of point pi = (xi, y1) and the line L = (r,a) is xicosc + yisina - r.

Therefore, the sum of the squares of all residuals is

n

S = E (r-xicosa-y sina) 2  (Eq 4.7)
i=1I

The line which best fits the set of points is supposed to minimize S. Thus the optimum

line (r,a) must satisfy

dS dS- - 0 (Eq 4.8)
r do6
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Thus,

dS 
n

dr= 21 (r-xicosa-ysina) (Eq4.9)
i= 1

Ir _ (i n n_ _ )y

= 2 1- 1( x i Cosa- Y sinoa
\r i= I i=1 ) i-

= 2(rmoo-m 0 cosa-molsina)

=0

and

r = -cosa + -- sina = gicosa + I. sina (Eq 4.10)Moo Moo

where r may be negative. Substituting r in Equation (4.7) by Equation (4.10),

n

S ((x i - gx) cosa + (Y- 4 Y ) sina) (Eq4.11)
i=1

Finally,

dS a (x i - g,,,) cos a + (Yi - gty ) sin a) (- (xi - g.x) sin a + (Yi - gty coo

i=1I

n nl

= 2, ( (Yi-) 2 _ (X, - gx ) 
2 ) sincosa + 2 (Xi -- Rdx) (Yi- ) (COS 2  - sin2 a)

i=1 i= 1

= (M02 - M20) sin2a + 2MI cos2a (Eq 4.12)

=0

Therefore

a=atan (2M 11/ (Mo2 - M20) )E .3

2

Equations (4.10) and (4.13) are the solutions for the line parameters generated by a

least squares fit.
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B. Thinness Testing

The equivalent ellipse of inertia for the original n points is an ellipse which has the

same moments around the center of gravity. Mmj, and Mmio, are moments about t'.e major

and minor axes respectively (Figure 4.2).

Y

Major axis

Minor axis

Origin X

Figure 4.2. The equivalent ellipse of inertia for line L.

Mmajor = (M 20 + M02) /2 - J(M 02 - M 20 ) 2/4 + M21  (Eq 4.14)

Mminor = (M20 + M02)/2 + ,(Mo 2 -M 20 ) 2/4 + M21  (Eq 4.15)

The diameters dmao,, on the major axis and dmm on the minor axis of the equivalent

ellipse are

dmajor = 4JMminor/mo0 (Eq 4.16)

dminor = 4JMmajor/mo0 (Eq 4.17)

We define p, the ellipse thinness ratio, to be the ratio of d ,, and dmajo,:

dminor (Eq 4.18)

S-dmajor

A small p means a thin ellipse; as p increases toward 1 the ellipse degrades to a circle

representing a thick line or a "blob" of points. We will use p as an additional measure of

the linearity of a set of points and, by comparing p to a constant C3, we may use p to

determine the end of a line segment.
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C. Finding Endpoints

The residual of a point pi = (XL, Y) is

8i = (gx-Xi) Cosa+ (gy Yi) sina (Eq 4.19)

Therefore, the projection, p'i of the point pi onto the major axis is

P'i = (Xi + 8iCosa , Yi + 8isinca) (Eq 4.20)

We will use p'i and p'. as estimates of the endpoints of the line segment L obtained

from the set p of data points.

D. Residual Testing

In addition to the ellipse thinness testing which occurs after a new point has been

included in the line segment, we wish to do some pre-filtering of the data in order to remove

points from the data stream which are clearly not colinear with the existing points of set p.

In this way we can often detect the end of a line segment before having to perform the

considerable computations necessary to include it in the line. If the point satisfies

8i+ I < max (o x CI, C2) (Eq 4.21)

where Cl and C2 are positive constants (typically, C1 = 2.0 and C2 = 2.0) and the standard

deviation a is

a = VMminor/(i - 2) (Eq 4.22)

then the point can be included in the current line segment.

E. Beginning Line Segments

Clearly, at least two data points must be collected in order to define the start of a line

segment. In the software model adopted in this project, the usefulness of data points to the

current line segment is judged on a "best two out of three" basis. In this model, two out of

three consecutive data points must fail the residual testing in section D above in order for

the system to end the current line segment. In keeping with this model, we have chosen

three as the number of points necessary to start a line segment.
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With the line segment established, collection and testing of the fourth data point can

proceed. If the data point passes the residual testing, the moments and test values for the

line are calculated including the new point and the ellipse thinness test performed. Should

that test pass, the line segment parameters (endpoints, length, etc.) are updated and the

system proceeds to gather a new data point.

If, however, the fourth data point shouldfail the residual testing, the system deletes the

first data point gathered and restarts the line segment with the second, third and fourth data

points. This process continues until the first data point collected following line segment

initiation passes residual testing. In this way we eliminate erratic start-up data, but start the

line segment with the earliest possible acceptable data.

F. Ending Line Segments

There are three ways in which a line segment is ended. It may be ended by the failure

of data points to pass the residual testing, by the failure of the line segment to pass ellipse

thinness testing, or explicitly ended by the user of the program.

In the case of ellipse thinness testing, p is compared to a constant C3. If p is greater

than C3, the line segment is ended.

In the case of residual testing, we wish to protect ourselves from the effects of

infrequent erroneous data points. If we were to end a line segment on the strength of one

data point that failed residual testing, a noisy environment would quickly reduce linear

features to an unmanageably large number of segments. As a protection against this

occurrence, we require that two out of three consecutive data points fail to pass residual

testing before ending a line segment.

If a data point fails residual testing, the system does nothing but store the data point

temporarily and then gathers two more data points. If either one of the second pair data

points fails residual testing, the line segment is ended and the failed data points form the

start of a new line segment. If both of the second pair of data points pass residual testing,
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the errant data point is thrown out and the two succeeding data points are sequentially fed

to the linear fitting algorithm.The process then carries on normally.
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V. SONAR USER INTERFACE

With the physical design of the sonar system settled and the basic capabilities of the

system defined, we turn our attention to the implementation of the sonars functions in

software. In this chapter we will first examine our basic precepts for the design of such a

software system, and follow that with synopsis of the functions written to support our goals.

A. Precepts

The user interface must clearly represent the high level tasks the user wishes to

accomplish and transmit the correct instructions to the mid level code to perform those

tasks. Those high level tasks include:

1) providing the range to an object on demand
2) providing global x,y coordinates for sonar returns on demand
3) developing a representation of surfaces it may encounter
4) providing those surface representations on demand
5) recording desired data for download and analysis

The sonar system must accomplish these tasks in a real time environment using it's

single onboard processor, which must also handle all locomotion processing and any higher

level functions the user may ultimately develop. Clearly our design must minimize the

processing required whenever possible - it is not feasible to simply perform all the

functions all the time. Our language must, therefore, provide a method for enabling

functions as needed and disabling those functions when the user no longer requires them.

We must also design a language that is similar enough to the existing MML to form

a "seamless" programming environment for the user. Not only does this mean that the sonar

functions should be similar in format to the MML locomotion functions, but they should be

similar in scope. The user should feel that he is accomplishing the same level of control

with the sonar functions as he is with the locomotion functions. As an example, it would be

appropriate to issue a sonar command to gather data from a given sonar following a

locomotion command to move from one point to another. It would be inappropriate to issue

a sonar command to "map the enclosing space" following a list of move commands to
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traverse the space. A command with such wide scope is better suited to higher level

cognitive functions, such as a navigator, rather than the sensory level.

Finally, the user interface should reveal only the level of detail necessary for the user

to effectively employ the sonars. Underlying processes and data structures should remain

hidden as much as possible, leaving function calls that are as simple and easy to understand

as possible.

B. Sonar User Language Overview

1. Range and Position

In order to reduce the time needed to obtain a range value and to avoid firing all

the sonars, an enablesonar function is provided. After a sonar group is selected by this

function, a background process repeatedly fires the sonar group at a constant interval and

maintains the range values for the four sonars in the group in a data structure called

sonar-table. These current range values may be individually requested by a sonar function

call, or the robot user may call the wait-sonar function to delay further processing until a

new range update is available from the sonar. A disablesonar function allows the user to

turn off a sonar group when it is no longer needed, thus allowing more frequent sampling

of the remaining enabled sonars.

While a simple range is useful for tasks such as obstacle avoidance and wall

following, developing a sense of position in the real world requires that we fix the position

of those sonar returns in some sort of coordinate system. To accomplish this we provide a

global function call, which returns a data structure called posit containing the global x and

y coordinates of the origin of the latest sonar echo, and the orientation of the sonar axis with

respect to the global x axis at the time of the range.

2. Linear Features

If the user desires to acquire a surface rather than simply a range, the

enable linear_fitting function may be called. When invoked for a particular sonar, this

function will cause the best straight line fit for a continuing sequence of range values from
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that sonar to be found. When the range data falls outside of preset bounds, the linear feature

being generated will be terminated and a new segment begun. The completed linear feature

is described in a data structure called a segment which, in turn, is stored in a segmentlist

for that sonar. A disablelinearfitting function allows the user to discontinue linear fitting

when not needed. A setparameters function allows the user to specify certain parameters

for the least squares line fitting routine used to generate the linear features. A

finishsegments function allows the user to complete segments at the end of a particular

motion of the robot, when no other indication exists to cause the ending of the segment.

As noted above, completed segments are stored in a list of such structures for each

sonar. The user may access these structures with a getsegment function call, which returns

the segment at the head of the list and moves the head pointer to the next descriptor. The

descriptor returned is the oldest descriptor on the list; successive calls to getsegment

produce successively more recent descriptors until the most recent is sent and the head

pointer goes to null. If the user needs the data for the linear feature currently being

assembled by the background process, a function called get-current_segment is provided.

The need for such a function arises from the need for current data for navigational updates.

3. Data Logging

Since Yamabico is, after all, a research vehicle it will be necessary for the robot

to communicate what it measures with it's sonars back to a host machine and the user. This

operation is accomplished in two steps. First, the data to be logged is selected and the data

logging enabled by the enabledatalogging function. The data is stored in arrays

according to the type of data selected for logging. These arrays are the rawdata_log, the

globaldata log and the segmentdata_log. There are four of each type of data array, for

a total of twelve data files. At the end of the robot's mission the collected data may be

transferred to the host by use of the xferraw tohost, Xferglobal to host, and

xfersegment to host functions, respectively. Since the sonar system can collect data at

intervals as short as 25 milliseconds, it may be desirable (or necessary) to record only a
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portion of the data collected. To accomplish this the set log interval function is provided.

Of course, as with the other enabling functions, data logging can be stopped with the

disabledatalogging function.

4. Program Control

When the user writes his program for the robot, he may find that he needs to

"stall" the progress of the program at times to allow the robot to physically "catch-up" to

the real world position that the program presumes it is in. This is necessitated by the method

of operation of the locomotion functions. As sequential locomotion functions (ex. move,

rotate, and stop) are encountered in the user program, they are processed onto a queue and

the processing of the user program continues. The function at the head of the queue is

performed until it's goal has been met, at which time it is popped off the queue and the next

sequential function is commenced. The result is that although the user writes a sonar

function after, say, the third move command in his program, in actuality it may occur during

the execution of the first command. To counter this effect, the designers of the locomotion

functions included markmotion and waitmotion commands to halt further processing of

the user program until a specific sequential command was complete. In our sonar language,

we incorporate a similar feature to halt processing of the user program until certain

conditions are met. This is the waituntil command, which can delay processing based on

the robot's x, y, or theta or based on the range from a given sonar. Additional functions

available to the user to assist in control of the robot are the enable_ and

disableinterrupt operation functions. With these functions the user can shift from

interrupt driven operation to polling operation and back, thus allowing the user greater

latitude in shaping the operation of the robot.

C. Data Structures Synopsis

All of the data structures used in sonar.c are of a fixed size and are established at

compile time. Since the functions always deal with the same data structures, differentiating

only by sonar number within the structures, those structures were made global in scope and
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parameter passing is often limited to a single integer representing the sonar number. All of

the data structures are defined in mml.h in such a way that the structures are actually

declared in main.c and referred to as external in other files, including sonar.c. In the

remainder of this section we will present a brief description of all the data structures

specific to sonar.c. and of interest to the user.

1. Sonar Table

Structure: typedef struct{
int file[3],

fitting,
global,
update,
interval,
filenumber[31;

double d,
X,
Y9
t,

gx,

gy,
offset,
phi,
axis;
} SONARD;

SONARD sonar-table 1161;

Description: As can be seen from Figure 6.1, the sonar table is central to the
operation of the sonar system. It contains not only the range (d)
but the robot's position at the time of the range (x, y and t) and
the global coordinates corresponding to that range and position
(gx and gy, if global conversion is enabled). The sonar table is
also the location of constants describing the position of the indi-
vidual sonar relative to the robot's coordinate system (offset,
the euclidean distance from robot center to sonar center, phi, the
angular offset from the robot's x-axis to the sonar center; and
axis, the angular orientation of the sonar beam's axis to the
robot's x-axis). The sonar table also contains a number of flags
which guide the operation of the sonar system. These are file[3]
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and filenumber[3], which hold information for selecting and
logging data; interval, which describes how often to log raw or
global data; fitting, which directs the linear fitting of data;
global, which directs the global conversion of data; and update,
which informs the sonar system that new data exists in d.
An array of sixteen of these structures is formed, which is then
indexed by sonar number.

2. Segment Descriptors

Structure: typedef struct{
int sonar,
double headx,

heady,
tailx,
taily,
phi,
r,

length,
dmajor,
dminor,
) LINESEG;

LINESEG segjlist[ 16][51;
LINESEG segstruct;
int segjlist head[ 16];
int seg-list-tail[ 16];

Description: The LINESEG structure contains all the data necessary to
completely describe a line segment. This includes an integer to
represent the sonar which recorded the segment, and doubles to
record the endpoints (head x and y, tail x and y), the angle and
length of a normal to the segment from the origin (phi and r),
the length of the line segment and the length of the axes of the
ellipse containing all the data points of the segment (dmajor and
dminor). These structures are arranged in a two dimensional
array. One index is the number of the sonar from which the
segment is derived; the other index has two pointers, seglist_
head and seg_listtail. The nth position of each of these arrays
holds an integer (0 through 4) which points to a position in the
nth array of segjlist. By using these pointers a circular queue
is formed of each of the arrays of seglist which can hold the 5
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most recent segments described by a given sonar. It is presumed
that any navigation program will not require more history than
these five segments; if so, the second index of seg-list can be
increased. The individual LINESEG structure called segstruct
is a temporary storage location used by getcurrentsegment and
endsegment.

3. Data Logs

Structure: typedef struct(
int count,

next;
double darray[MAXRAW],

xarray[MAXRAW],
yarray[MAXRAW],
tarray[MAXRAW];
) RAW;

RAW rawdatajlog[4];

typedef struct{
int count,

next;
double xarray[MAXGLOBAL],

yarray[MAXGLOBAL];
) GLOBAL;

GLOBAL globaldatalog[4];

typedef struct{
int count,

next;
double LINESEG array[MAXSEGMENT];

) LINES;
LINES segment datalog[41;

Description: The data logs are arrays to which the user program writes data
during it's execution. These logs are converted to ASCII strings
at the completion of the user program by the xferdata_to_host
functions, and those strings are in turn transferred to the host by
the host xfer function. There are three types of data logs, the
rawdatajlog, the globaldatalog and the segment-data_log,
which are referred to by their respective type numbers 0, 1 and
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2 when using the enable data logging function. For each log
type there are four structures, or data files, in the respective
array. These are referred to by their respective file numbers 0,
1, 2 and 3 in the enabledata logging function. The size of the
arrays within the structures limits the number of data elements
that may be logged in each datafile.These array size values
MAXRAW, MAXGLOBAL and MAXSEGMENT are defined
in mml.h. The count value is the number of data values reported
to the logging function, while the next value is the number that
have actually been logged (these values will differ if
log-interval is set to a value other than 1). The rawdatajlog
records range and the robot's x, y and t positions at the time of
the range. The global.data-log records global x and y values for
sonar returns. The segment datalog records line segments in
the form of segment descriptors previously described.

4. Posit

Structure: typedef struct{
double gx,

gy,
psi;
iposit

Description: This structure is used to pass the global coordinates of a sonar
return and the orientation of the sonar axis with respect to the
global x axis back to the requesting function.

D. Definitions Synopsis

There are some definitions made in the mml.h which may make the programming of

some of the functions easier. These mnemonics may be used in place of the integer

parameters called for by the function synopsis.

1. Sonar Numbers

FRONTL 0
FRONTR 3
LEFTF 4
LEFTB 5
RIGHTF 7
RIGHTB 6
BACKL 1
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BACKR 2
FRONTLEFT 11
BACKLEFT7 8
BACKRIGHT 9
FRONTRIGHT 10
TESTOVERFLOW 12
TEST1024 13
TEST2048 14
TESTDELAY 15

2. Wait Until Parameters

X 12
Y 13
A 14
DO 0
D1 1
D2 2
D3 3
D4 4
D5 5
D6 6
D7 7
D8 8
D9 9
D1O 10
DII I11
GT 15
LT 16
EQ 17
PI 1 = 3.14159265358979323846
DPI 2
HPI 0.5 x
P134 0.75 x
P14 0.25 x

E. User Function Synopsis

Complete code of the sonar user functions is contained in Appendix A. For each

function we provide here a synopsis of the functions syntax and a brief description of what
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the function accomplishes. Where an integer n is specified as a parameter to indicate a sonar

number, the user may instead use predefined values such as FRONTL or BACKRIGHT.

These definitions are made in mml.h and will be presented in the next section, Data

Structures. Other such definitions exist and will be noted in the appropriate synopsis.

1. Enable Sonar

Syntax: void enablesonar(n)
int n;

Description: Causes sonar n to pulse and receive echoes. Range data
recorded in sonar table. User should remember that all the
sonars in the logical group to which sonar n belongs will pulse
simultaneously.

2. Disable Sonar

Syntax: void disablesonar(n)
int n;

Description: Turns off sonar n. User should remember that the group will
continue to pulse if any other sonars in that group are enabled.

3. Sonar

Syntax: double sonar(n)
int n;

Description: Returns the latest range value for sonar n in centimeters as a
floating point number. Returns -1.0 if sonar was over-ranged
and 0.0 if range was less than 10 centimeters.

4. Wait Sonar

Syntax: double waitsonar(n)
int n;

Description: Causes processing to wait until a new value of range for sonar
n is received, then returns range as in sonar(n).

5. Global

Syntax: posit global(n)
int n;

Description: Returns the structure posit, which contains global x and y
values for the origin of the last sonar echo and sonar axis
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orientation at time of range, for sonar n.

6. Enable Linear Fitting

Syntax: void enablelinearfitting(n)
int n;

Description: Causes linear fitting routine to find best straight line through the
set of data points collected from sonar. Stores segments in
seglist, which can store up to five segments. See the seglist
synopsis.

7. Disable Linear Fitting

Syntax: void disablelinearjfitting(n)
int n;

Description: Stops the linear fitting of data for sonar n.

8. Enable Data Logging

Syntax: void enable_datajlogging(n,filetype,filenumber)
int n, filetype, filenumbcr,

Description: Sets the correct file flag for sonar n to cause a particular data
type to be logged into a file designated byfilenumber. Afiletype
value of RAW will cause raw sonar data to be logged, GLOBAL
will cause global coordinates to be logged, and SEGMENT
will cause segments to be logged. There are four files for each
filetype, labeled as 0, 1, 2 and 3. For example:

enabledatajlogging(RIGHTF,GLOBAL,2);
will cause global coordinates for sonar 7 to be logged in file
number 2. The integer values of RAW, GLOBAL and
SEGMENT are defined in mml.h.

9. Disable Data Logging

Syntax: void disabledatajlogging(n,filetype)
int n, filetype;

Description: Stops the logging of datafiletype for sonar n.

10. Get Segment

Syntax: LINESEG *get-segment(n)
int n;

Description: Returns a pointer of type LINESEG to the oldest segment in
array seg-list for sonar n. Function is destructive; i.e. it will
move the head pointer to the next segment in seglist when
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it returns the pointer to the oldest segment, thus successive
calls to this function will return subsequent segments until
seg-list is empty. If get-segment is called on an empty list
a null pointer will be returned.

11. Get Current Segment

Syntax: LINESEG *get current-segment(n)
int n;

Description: Returns a pointer to the segment currently under construction
if there is one, else returns a null pointer. It does this by calling
endsegment and returning a pointer to the temporary data
structure that end-segment constructs. The line segment is not
ended by this function call - it will continue to grow until the
linear fitting algorithm determines it should stop. This function
merely takes a "snapshot" of the segment as it exists at the
moment.

12. Set Parameters

Syntax: void seLparameters(c 1,c2,c3)
double cI, c2, c3;

Description: Allows the user to adjust constants which control the linear
fitting algorithm. C I is a multiplier for standard deviation and
C2 is an absolute value; both are used to determine if an
individual data point is usable for the algorithm. C3 is a value for
ellipse thinness; it is used to determine the end of a segment.
Default values are set in main.c to 3.0, 5.0 and 0.1 respectively.

13. Enable Interrupt Operation

Syntax: void enable interrupt-operation(
Description: Places the sonar control in the interrupt driven mode, which is

the default mode.

14. Disable Interrupt Operation

Syntax: void disable_interrupt_operation(
Description: Causes the sonar control board to cease generating interrupts.

Bit seven in the status register is set when there is data
ready, and it is the user's responsibility to poll the system.

15. Set Log Interval

Syntax: void set_log_interval(n,d)
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int n, d;
Description: Sets the value of interval for sonar n to d. This causes the data

logging function to record one data point for every d points sent
by sonar n. Effective for raw and global data only, has no effect
on the logging of segme-nts. Default value is 13, which for a
speed of 30 cm/sec and a sonar sampling rate of 40 Hz (one
group enabled) results in a data point every 10 cm.

16. Xfer Raw To Host

Syntax: void xfer_rawto-host(filenumber,filename)
int filenumber;
char *filename;

Description: Causes raw data from a filefilenumber to be downloaded to
the host. Filename must be entered in double quotes
("dumpraw" for example).

17. Xfer Global To Host

Syntax: void xfer-global-tohost(filenumberfilename)
int filenumber;
char *filename;

Description: Same as xfer_rawto_host, but for global data vice raw data.

18. Xfer Segment To Host

Syntax: void xfersegmentto host(filenumber,filename)
int filenumber;
char *filename;

Description: Same as xferrawto_host, but for segment data vice raw data.

19. Finish Segments

Syntax: void finish-segments(n)
int n;

Description: Completes segments for sonar n at the end of a data run.
Necessary because the linear fitting function only terminates a
segment based on the data - it has no way of knowing that the
user has stopped collecting data.

20. Wait Until

Syntax: void wait_until(variablerelation,value)
int variable, relation;
double value;
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Description: Function will delay it's completion (and thus the continuance
of the program it's embedded in) until the variable achieves
the relation with the value specified. For example, presume
the robot is traveling along the X axis. If the user wants the
robot to begin producing sonar data when the robot's x position
exceeds 500 cm., he would insert this command after the move
command:

wait-until(X,GT,500.0);
enablesonar(sonar number);

The variables are predefined as X, Y, A, and DO through D 11,
and correspond to the robot's x position, y position, theta, and
range from sonars 0 through 11. Relations are predefined as
GT, LT and EQ corresponding to greater than, less than and
equal to. Value may be any number expressed as a double or
the predefined values PI, HPI, P134, P14 or DPI.
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VI. BACKGROUND SOFTWARE IMPLEMENTATION

With both the high level and low level interfaces established, we now turn our

attention to the mid level code that forms the bulk of the software system. This code

manipulates the data provided by the low level hardware as directed by commands from the

high level functions. The results of these manipulations are either made directly available

to the user or are logged in memory for later transfer to the host computer. We will first

examine the precepts for the mid level design, then present an overview of system operation

and a synopsis of the background functions.

A. Precepts

The background software system must perform the work specified by the user through

the high level commands upon the raw data provided by the hardware (low level) system.

This work, or mid level tasks, includes:

1) interpreting the high level commands
2) controlling the hardware/software system
3) gathering the correct data
4) processing the data into the desired forms
5) returning data as requested
6) storing data when directed

As pointed out in the last chapter, Yamabico has only a single processor with which to

perform all of the computation for the robot. It is essential, therefore, that we design our

code to be as conservative as possible with processor time. We pursue this goal along two

avenues. First, we selectively process the data rather than universally processing it. By this

we mean that we perform only the calculations necessary to provide the data the user

specifically asks for, rather than performing calculations over an entire set of data. As an

example, rather than routinely calculating global coordinates for all sonar returns, we

perform those calculations only for those sonar returns designated for linear fitting, global

data logging or return of global coordinates to the user. Second, we must design functions

in such a way as to minimize processing under "normal" conditions and degrade to more
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lengthy procedures as it's operating environment becomes more complex. As an example,

the linear fitting algorithm should loop through the minimum code possible while the input

data is all continuously acceptable. If the robot's sonar data becomes less reliable, then

additional testing of the data should be performed only as long as required to filter errant

data points from the input stream. When the data again becomes routinely acceptable, the

processing should return to the minimum level possible.

We must also account for the interrupt driven nature of the machine in the design of

our software. It would be a simple matter to program a machine which had only to deal with

sonar processing for one sonar, but a significantly more complex problem to deal with

twelve sonars on a time shared basis with locomotion and I/O processes. Using the linear

fitting algorithm as an example once again, we note that we must preserve the value of

several summations between calls to the sonar system which provide the data points, and

must do so for each sonar we are evaluating. In a single purpose processor this interim

storage would not be necessary.

B. Background System Overview

The functions discussed in the previous chapter are the user functions - the functions

normally available to the user for writing his programs. To support these user functions

there are a set of background functions which the user would not normally use or even have

access to. At the root of these background functions is the sonar interrupt handler, called

ihsonar. This program is written in assembler code and is the interface between the sonar

hardware and the sonar software system. When the hardware has data ready and generates

an interrupt, ihsonar first saves the state of the processor. It then places the sonar data on

the stack, determines which of the sonars are over-ranged and places that data on the stack,

places data about the robot's position on the stack and calls serve-sonar. When servesonar

returns control to ihsonar, the processor is returned to the state it was in before the

interrupt and the interrupt processing is complete.
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Servesonar serves two major purposes. First, it loads the correct range data into the

sonartable along with the robot's positional data and sets a flag indicating that the data for

that sonar has been updated. Second, it examines a number of flags and determines which

functions must be performed on which data. The scheduling which occurs here is the first

step in paring the processor's work load to the minimum amount necessary to accomplish

the user's desires.

If servesonar determines that global coordinates are required for a given sonar, it

calls the calculate-global function which will perform the calculations and load the

coordinates into the sonar-table for that sonar. Next, it determines whether the user desires

line segments to be derived from the data. If so, it calls the linear.fitting function.

Linearmfitting in turn uses several subroutines, including startsegment to gather the initial

points for the line segment, add to line to add data points to the line segment after it's

initial formation, and end segment to terminate the line segment when deemed necessary.

The buildlist function is used to add the completed segment to the proper list, and the

resetaccumulators function is used when necessary to reset the summations for the linear

fitting algorithm.

When the various data c ',ersions are complete for a given sonar, serve-sonar

determines whether the user desired for any of the data to be logged, and if so calls the

logdata function which extracts the correct data and places it in the appropriate array. At

the completion of the mission, the host xfer function is used to transmit the data as a single

string to the host computer.

The reader will note one additional function in the sonar.c file. That is msbn, which is

the target of an interrupt handler ihmsbn. Msbn is the location of a future precise

navigation system, and as such will doubtless be part of it's own source file. For the interim,

msbn is included in sonar.c as a placeholder for ih msbn.

Figures 6.1 a, 6.1 b and 6. Ic on the following pages give a graphic representation of the

sonar system functions and their basic interrelations. The background functions are

arranged on the left side of the diagram and the user functions on the right side. Key data
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structures are displayed in the middle. Sonar data flow is represented by heavy lines, while

control and selection values are represented by the light lines.

C. Data Structures

The following are additional data structures which are hidden from the user.

Knowledge of these data structures is necessary only to understand the functioning of the

background system.

1. Segment Data

Structure: typedef struct{
int n,

rst,
sgmp;

double initx[3],
inity[3],
sgmx,
sgmy,
sgmx2,
sgmy2,
sgmxy,
sgm-delta-sq,
theta,
r,

d_major,
d_minor,
startx,
starty,
endx,
endy;
) CURDATA;

CURDATA segmentdata[16];

Description: the operation of the linear fitting algorithm is dependant on the
accumulation of certain sums. Since the processor is not dedi-
cated to the linear fitting process for a given sonar, we must be
able to save these summations in some interim state between
iterations of the linear fitting algorithm. This is the purpose of
the sgmx, sgmy, sgmx2, sgmy2, sgmxy and sgmdelta.sq items
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in CUR_DATA. In addition, we save the uncorrected starting
position and ending position of the segment (startx, starty, endx
and endy) and some parameters of the segment that are updated
for every iteration (theta, r, dmajor and dminor). The integers
represent the sonar number (n), the number of data points thus
far included in the line segment (sgmp) and a number
indicating which state the linear fitting algorithm should return
to for the next iteration of this line segment (rst). The structures
are arranged as a sixteen wide array indexed by sonar number.

2. Miscellany

There are some other variables and pointers mentioned that deserve some
explanation. These include:

-serviceflag an integer variable used to track the number of
enabled processes. If service flag = 0 then no
processes (global conversion, linear fitting, etc.) are
active and the serve sonar function can short circuit
a large portion of code.

-enabledsonars[ 16] indexed by sonar number. A value of 1 at a position
would indicate that sonar is in use.

-commandptr a pointer to the command register on the sonar
control board. This is a write only register; the value
of the command register may not be read.

-enabled a variable that contains the current value of the
command register. This is where the contents of the
command register must be read.

-statusptr a pointer to the status register of the sonar control
board. This is a read only register and is at the same
address as the command register. Therefore, if an
attempt is made to read the command register vice
enabled, the contents of the status register is what
will be returned.

-BIM-ptr a pointer to the BIM control register. The BIM is
the Bus Interface Module on the VME motherboard
which carries the sonar control board.
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-group-array[4] [4] this array maps sonar numbers to groups.

-Cl, C2, C3 constants for linear fitting algorithm. Declared in
mml.h, initialized in main.c.

D. Background Function Synopsis

While the user sonar functions are those the user would employ in his/her program,

the background sonar functions are those functions the system employs to control the sonar

system and achieve the users objectives. Code for the interrupt handler is provided in

Appendix B, and code for the "C" functions is provided in Appendix A. A brief synopsis

of the functions are provided here.

1. Interrupt Handler

Syntax: ihsonar
Description: this is an assembly code program which resides in interrupt.s.

When the sonar control board's interrupt is acknowledged by
the processor, the BIM provides a vector to the starting address
of this program. This program then accomplishes the following
tasks:

- saves the state of the processor and coprocessor
- loads the sonar group number onto the stack
- loads the sonar data registers onto the stack
- composes the overflow word and loads it onto the stack
- loads robot's current x,y,t onto the stack
- calls the serve sonar routine
- upon return, restores the processor and coprocessor to

their previous state

2. Serve Sonar

Syntax: void servesonar(x,y,t,ovfl,data4,data3,data2,data 1,group)
double x, y, t;
int ovfl, data4, data3, data2, data 1, group;

Description: this function is the "central command" for the control of all sonar
related functions. It is linked with the ihsonar routine and loads
sonar data to the sonartable from there. It then examines the
various control flags to determine which activities the user
wishes to take place and calls the appropriate functions. This
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function is invoked only when a sonar group is enabled, causing
the sonar control board to generate interrupts. If one sonar
group is enabled, this function is invoked approximately every
25 milliseconds.

3. Calculate Global

Syntax: void calculate-global(n)
int n;

Description: calculates the global x and y coordinates of the point located by
sonar n. Uses the range value for sonar n, the position and
orientation of the robot at the time the range was acquired, and
the dislocation of the sonar from the center of the robot. All of
this data is located in sonarjtable[n]. Function first permutes the
posture of the robot to find the global posture of the selected
sonar, using the phi, offset and axis values from the sonar table.
The global x and y position of the sonar is then translated along
the axis of the sonar beam the distance d, resulting in the global
x and y values for the echoing point. These are stored as gx and
gy in the sonar table. See Figure 6.2.

4. Linear Fitting

Syntax: void linearfitting(n)
int n;

Description: controls the fitting of global coordinate data to straight line
segments. First collects three data points to initialize a line
segment (see start segment). After the segment is established
the procedure tests each subsequent point for it's acceptability
prior to adding it to the segment (see add to line). After
including the data point the segment is tested to ensure the entire
set of data points is "linear enough". If two out of three points
are unacceptable or if the set of points fails linearity checks the
line segment is ended and a new one started (see end_segment).
The completed line segment data is recorded in a data structure
called segment and the segment is added to a two dimensional
array called seglist. Seg-list is indexed by sonar number and
pointers to the oldest and newest segments stored at that sonar
number. Function uses a multivalue flag rst to track the status
of the line segment and the three latest points being fitted. See
the Linear Feature Extraction chapter for more details
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Figure 6.2. Robot and Sonar Position Values.

5. Start Segment

Syntax: void starLsegment(n)
int n;

Description: establishes a new line segment with the three data points con-
tained in segment-data[n].init(x and y). It writes the appropriate
data to the interim values in segment-data[n].

6. Add To Line

Syntax: void addto_line(n,x,y)
int n;
double x, y;
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Description: calculates new interim data for the line segment and stores it in
segmentdata[n]. Input parameters x and y are the global x and
y coordinates of the point being added. The function also
calculates the thinness ratio for the segment and updates
segment parameters if the ratio is satisfactory, otherwise it
sets flag rst to indicate that the segment failed thinness and must
be ended.

7. End Segment

Syntax: LINESEG *endsegment(n)
int n;

Description: calculates the true endpoints of the line segment and it's length.
The data is written into a temporary buffer and a pointer to that
buffer is returned.

8. Reset Accumulators

Syntax: void reset_accumulators(n)
int n;

Description: resets the accumulative values in segment-data[n] (sgmx,
sgmy, sgmx2, sgmy2, sgmxy) to zero.

9. Build List

Syntax: void build_list(ptr,n)
int n;
LINESEG *ptr,

Description: stores the segment that ptr points to in the array seg-list at the
next position (pointed at by the tail pointer) and then updates
the tail pointer. If the tail pointer rolls around to the location of
the head pointer (segjlist is essentially 16 circular queues) it
will also move the head pointer up one position. This destroys
the oldest segment in the queue and keeps the five newest.

10. Log Data

Syntax: void log-data(n,type,filenumber,i)
int n, filenumber, type, i;

Description: causes data to be written to a file. The filenumber specifies to
which of the four files (0, 1, 2, 3) for a given data type the data
will be written to. The value of i is used to index the seg-list
array for storing line segments.
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It. Host Xfer

Syntax: void host -xfer(buffer,filename)
char * buffer;
char *filenme;

Description: transfers a data string to the host.
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VII. TEST RESULTS AND CONCLUSIONS

Testing was conducted in two phases. In the first, or static, phase the robot was

supported on blocks and the operating parameters of the sonar were tested. In the second,

or dynamic, phase the locomotion functions were called into play. The robot was first

allowed to run a mission while on the blocks, to ensure the interoperability of the sonar and

locomotion systems. The robot was then run in the hallway of Spanagel Hall to gather real

world data for download to the host system, a Sun 3/60.

A. Static Testing

The first trial program (Appendix C. 1) simply asked the user for a sonar number and

then displayed the range returned by that sonar repetitively, with a delay set by a number

of wait_sonar commands. The second program (Appendix C.2) was only slightly more

complex and allowed for the user to enable or disable multiple sonars. Using these

programs, we were able to determine that each of the sonars did indeed work and return a

correct range, and we were able to determine the beamwidth of the sonar.

1. Sonar Operability

Table 7.1 lists the results of the individual tests of the sonars at a range of

approximately 500 millimeters. The a and b values are the distances from the receiver

transducer and the transmitting transducer to the target, respectively, as shown in figure

7.1.While we expected to find ranges equal to the average of these two values, the actual

ranges more closely followed the target - receiver distance. The average error was + 18.95

mm., placing the average sonar centroid very near the location of the receiver transducer.

The greatest error noted was +32.5 mm., or 6.5% of the indicated range of 504 mm. range

for sonar 9.
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Figure 7.1. Transmitter - Receiver Offset

Table 1: Sonar Ranging Test Results

Sonar a (mm) b (mm) range (mm)

0 518 478 510

1 518 480 513

2 520 484 514

3 513 474 515

4 495 455 503

5 492 454 479

6 495 455 499

7 488 449 482

8 505 465 499

9 500 463 504

10 488 449 486

11 495 452 506
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2. Effective Beamwidth

In the next portion of the static testing, we used a movable target wall to

experimentally determine the effective beamwidth of the sonar. The theoretical beamwidth

of a sonic transducer in the far field may be calculated as

0 = (1.22X)/D (Eq 7.1)

where 0 is in radians, X is the acoustic wavelength and D is the transducer diameter. For

our operating frequency of 40 KHz and with a transducer diameter of 1.5 cm., we calculate

a theoretical beamwidth of 0.697 radians, or 40 degrees. We expect this value to be reduced

somewhat by the beam shaping cones placed around each transducer. Also, we note that we

are actually measuring conditions under which enough sonic energy is returned to the

receiver to exceed the threshold value necessary to register a return pulse. This will form

an "effective beamwidth" which is much less than the theoretical beamwidth and dependent

on transmitter signal strength, receiver sensitivity, air conditions and the nature of the

reflecting surface. Out test setup is depicted in Figure 7.2.

Panel A

Transmitter I

45 mm. leading edge

Panel B

One Meter

Receiver/
Transmitter
midpoint

Figure 7.2. Sonar Beam Test Setup

51



The leading edges of the two panels were insinuated into the sonar beam, first

individually and then simultaneously, to determine the point at which usable sonar

information was returned. For our purposes, usable sonar information was interpreted to

mean at least 50% of the returns actually provide a range, rather than an over-range (no

return) signal.

When the leading edge of panel A was inserted to the midpoint of the receiver's

axis, 50% of the sonar pulses produced a return. Those returns were of range 103

centimeters. Similarly, the insertion of panel B to the midpoint of the receiver's axis

produced a 50% return rate with a range of 103 centimeters. With both panels inserted to

the midpoint of their respective transducers axis, a 100% return rate was achieved with a

range value of 100 centimeters. This variation can be explained by examining the

transmitted and received pulse's waveshapes, shown in Figure 7.3.

V threshold 4 " "

transmit A A receive

A B timeA B

Figure 7.3. Sonar Waveshapes

While the return shown actually begins at point A, and the elapsed time at point

A would produce an accur ate range, the sonar does not detect the return until point B, when

the return pulse exceeds the receiver threshold. If we presume that the return pulse is barely

sufficient to exceed the threshold, as it must be if we achieving only a 50% return rate, and

knowing that our transmit pulse width is 500 microseconds, we may calculate that an

additional 250 microseconds or 8.58 centimeters are added to the round trip distance. This

maximum delay would be 4.29 centimeters of actual range and is, indeed, the value

indicated when the return rate drops to 10% or less as the panel is withdrawn.
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The 100 centimeter range returned with both panels inserted to the axis midpoints

indicates that the return signal is exceeding the threshold much earlier than it was with a

single panel. This would be expected, as the reflecting surface is increased in area thus

causing more sonic energy to be returned to the receiver. In keeping with this theory, we

find that if the two panels are pushed completely together, forming a continuous reflecting

surface, the indicated range drops to 99 centimeters.

As can be seen from Figure 7.2, the transducer axes are displaced from the center

of the transducer pair by 22.5 millimeters. This distance, at 1 meter range, equates to an

angle of only 1.3 degrees, thus forming an effective beamwidth at 1 meter of only 2.6

degrees. This very narrow beamwidth will permit precise location of surface edges when

applied in an orthogonal world,and also makes the sonar very sensitive to surface

orientation. If the surface is not within a very few degrees of perpendicular to the sonar

beam's axis, the reflected pulse will not fall within the sonar's receive cone and will be lost.

B. Dynamic Testing

Initial testing of the sonar system in combination with the locomotion system were

conducted with the robot supported on wooden blocks. In addition to ensuring the two

systems would run together concurrently, these tests allowed the author to learn how to

write user programs that actually accomplished the intended goal. Because the sequential

locomotion functions are placed on a queue as they are encountered in the user program,

the user must learn when to delay further executi:n of the user program so that the robot

may physically "catch up" to the program. Learning these techniques with the robot simply

spinning it's wheels rather than lurching about the hallway was a great timesaver.

Once the programming techniques were learned, a simple program was written that

had the robot proceed for 6 meters while recording global position data and deriving and

recording line segments descriptive of that data (Appendix C.3). The venue for the tests was

Spanagel Hall, fifth deck at Naval Postgraduate School and included two doorways that

served as markers for the output data (Figure 7.4). The robot was started at the same point
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for each data run, and two graphs display the results of each run. The left hand graph is a

display of the individual data points in global x and y coordinates, the right hand graph is

a display of the line segments derived by the robot to fit the data points. The robot

proceeded along a simple DR (dead reckoned) path to collect the data, the direction being

determined by the robot's initial heading. Deviation from a path parallel to the measured

wall accounts for the data's tendency to "lean" one way or the other from vertical.

Direction of travel

recon g sonar

Dorwy 6 meters

start stop

Figure 7.4. Sonar Dynamic Testing Venue

1. Test One

In this first test, the linear fitting parameters Cl, C2 and C3 were set at 3.0, 5.0

and 0.1 respectively. This means that individual data points would be acceptable for

inclusion in a line segment if they were displaced from the line segment by less than the

maximum of either 3.0 times sigma or 5.0 centimeters. The line segment will be terminated

if it's thinness ratio exceeds 0.1. The data interval for this test, and for the ensuing tests, is

set to 5. As can be seen in Figure 7.5, the global coordinate pairs returned by the sonar

accurately describe the wall and doorways being mapped. The linear fitting of the line

segments, however, leaves much to be desired.
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Figure 7.5. Sonar Dynamic Test One

Line segment AB incorporates two features, the doorway and the ensuing wall.

Line segment CD likewise incorporates a doorway and the ensuing wall. These segments

must be broken up into their two components in order to be useful.

2. Test Two

The offset from the walls to the doorway surfaces in our test area is approximately

9 centimeters. We judged that the C2 parameter of 5.0 was too large to allow clear

55



definition of features of that size, so for the second test run we lowered C2 from 5.0 to 2.0

centimeters. The results of that test run are shown in Figure 7.6.

E
600

D

doorway

C

400

B

doorway 200

0 A

Figure 7.6. Sonar Dynamic Test Two

In this case, line segments BC, CD and DE accurately represent the latter half of

the data run. The first half, however, incorporates the first doorway and both the leading

and trailing wall portions in one line segment, AB. Another adjustment is necessary.
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3. Test Three

For the third test we opted to change parameter C1, the sigma multiplier, from 3.0

down to 2.0. Parameter C2 remains at 2.0 and parameter C3 at 0.1. The results are shown

in Figure 7.7.
I I

E

doorway

D

400

doorway 200
B
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- I I I

0 50 100 150 0 50 100 150

Figure 7.7. Sonar Dynamic Test Three

Results from this test are not substantively different from test two, with the

exception that the incorrect line segment, DE, has endpoints which coincide with breaks in

the pattern of data points. This is still unsatisfactory.
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4. Test Four

For the next iteration of the test we turn our attention to parameter C3. Parameters

Cl and C2 are already adjusted as small as we judge is practical, while the linearity of the

data points suggests that a thinness factor of one in ten may be overly generous. We

adjusted the parameter C3 down to 0.08, so that our parameters are now 2.0, 2.0 and 0.08

for Cl, C2 and C3 respectively. The results are shown in Figure 7.8.

600

doorway

200

doorway

0
__________________________I

0 50 100 150 0 50 100 150
Figure 7.8. Sonar Dynamic Test Four

This combination of parameters for the linear fitting algorithm has produced

perfect results. The doorways are clearly defined and the length and orientation of the

segments match the sensed environment exactly.
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C. Conclusions

The sonar system designed for and implemented aboard Yamabico achieves the goals

set for it. Specifically, it:

- provides basic sonar data on demand
- extracts linear features from the data
- adapts to user demands to minimize processor time
- at the lowest level, operates completely autonomously
- has reduced hardware complexity to a great degree
- provides a friendly interface to the user

There are still some shortcomings to the system, however, that will require further

work to resolve. Most notable are the problems with the effective beamwidth of the

individual sonars. The extremely narrow beamwidth leaves large areas of the sonar azimuth

uncovered, thus eliminating any possibility of detecting objects that appear in the

uncovered areas between beams. The most probable fix for this problem is an increase in

sonar transmitting power, although a different transducer may also effect a significant

improvement.

Another significant problem is the relatively small amount of memory available to the

processor (one megabyte). Logging sonar data of large areas for later download, or creating

onboard maps of the environment, will require substantially more memory than is currently

available. While volatile RAM may be increased to accommodate this need for additional

memory, it is the author's opinion that conversion to an onboard processing system with

it's own operating system supporting some sort of mass storage would better serve current

and future computational requirements. The incorporation of higher level processes, such

as a navigator to utilize the sonar data now generated or the future installation of a vision

system, will certainly require more onboard computing power.
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APPENDIX A - CODE FOR SONAR "C" FUNCTIONS

I* sonarxc */
f* ultrasonic rangefinder functions *
#include "mml.h"

#define print..flex(x,y) y = putstr(" .... putsztr(rtoae((double) (x), trnpstr, 4), y))
#define nI flex(x) x = putstr("\n", x)

/*declarauion of functions and return values*/

extern double sonaro;
extern void enable_sonaro;
extern void disable-sonaro;
extern void msbno;
extern double wait-sonaro;
extern posit global();
extern void enablejlinear -fittingo;
extern void disable-linearjfluingo;
extern void enabfr...daajloggingo;
extern void disable -dataj- oggingo;
extern void serve--sonaro;
extern LINESEG *get-sgmento;
extern LINE_SEG *getcuff~ent-segmento;
extern void setparameterso;
extern void enable-interrupt operationo;
extern void disable_interrupt operationo;
extern void calculate-lobalo;
extern void linear~fittingo;
extern void startsegmento;
extern void add_to-lincO;
extern LINESEG *end_5gmento;
extern void reset~accumulatorso;
extern void buwlc~listO;
extern void log-data0;
extern void setlog-ntervalo;
extern void waiL untilO;
extern void xfer-raw to-hosto;
extern void xfer~lobalto_hostO;
extern void xfer..segment to_hostO;
extern void host_xfero;
extern void finish-segmentso;
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/* Procedure: sonar(n)
1*
/* Description: returns the distance (in centimeters) sensed by the

/* n-h ultrasonic sensor. If no echo is received, then a -1 is

t" returned. If the distance is less than 10 cm, then a 0 is
f* returned.
/.

double sonar(n)
int n;
{
return (sonar table[n].d);

1*

/* Procedure: enable sonar(n)

/* Description: enables the sonar group that contains sonar n, which
t* causes all the sonars in that group to echo-range and write data
,* to the data registers on the sonar control board. Marks the n'th

/* position of the enabled-sonars array to track which sonars are

/* enabled.
/,

void enablesonar(n)

int n;

I

int i;
i = imaskoffO;

enabled_sonars[n] = 1;
switch (n)
{

case 0:
case 2:

case 5:
case 7:

enabled = enabled I OxOl;

break;
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case 1:
case 3:
case 4:
case 6:

enabled = enabled I Ox02;
break;

case 8:
case 9:
case 10:
case 11:

enabled = enabled I Ox04;
break;

case 12:
case 13:
case 14:
case 15:

enabled = enabled I Ox08;
break;

}
*command.ptr = enabled;

imaskon(i);

/* Procedure: disable sonar(n)
1,

/* Description: removes the sonar n from the enabledLsonars list. If
/* sonar n is the only enabled sonar from it's group, then the
/* group is disabled as well and will stop echo ranging. This has
/* benefit of shortening the ping interval for groups that remain
t* enabled.
/*

void disable-sonar(n)
int n;

int i,c;
char mask;

i = imaskoffO;

enabled-sonars[n] =0;
switch (n)
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case 0:
case 2:
case 5:
case 7:

c = enabled-sonars[0I + enabled_sonars[2] +

enabled-sonars[5] + enabled-sonars[71;
if (c == 0) enabled = enabled & Oxfe;
break;

case 1:
case 3:

* case 4:
case 6:
c = enabled-sonars[1I + enabled-sonars[3] +

enabled-sonarsl4] + enabled-sonars[61;
if (c == 0) enabled = enabled & Oxfd;
break;

case 8:
case 9:
case 10:
case 11:
c = enabled-sonars[8] + enabled_sonars[9] +

enabled-sonars[10] + enabled-sonars[ 11;
if (c == 0) enabled = enabled & Oxfb;
break;

case 12:
case 13:
case 14:
case 15:
c = enabled_sonars[12] + enabled_sonars[13] +

enabled-sonars[14] + enabled -sonars[151;
if (c == 0) enabled = enabled & Oxf7;
break;

*copmand-ptr = enabled;
imaskonQ);

/* Procedure: msbn

J* Description: called every 5 ins, this routine drives the precise
t" navigation system.
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1,

void msbnO
I
I

/1 Procedure: wait_sonar(n)
f,
/* Description: waits in a loop until new data is available for

/* sonar n.
/*

double waiLsonar(n)
int n;

int a = 0;

sonarjtable[n].update = 0;
while (sonarjtable[n].update == 0);
retum(sonar-table[n].d);

/* Procedure: global(n)
/,
/* Description: returns a structure of type posit containing the global

/ x and y coordinates of the position of the last sonar return.
1,

posit global(n)

int n;
{

posit answer,

if (sonartable[n].global == 0) calculate global(n);

answer.gx = sonar-table[n].gx;
answer.gy = sonar-table[n].gy;
answer.psi = sonar_table[n].t + sonarjable(n].axis;
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return answer;

f* Procedure: enableclinear-fitting(n)

f* Description: causes the background system to gather data points

t'* from sonar n and form them into line segments as governed by
t" the linear fitting algorithm. Increments service_flag.

void enable-linear-fitting(n)
int n;

sonarjableln].fitting = 1;
sonar...table[nI.global = 1;
++service~flag;

/* Procedure: disablejlinearjfitting(n)

P" Description: causes background system to cease forming line
1* segmenis for sonar n. Decrements the service -flag.
f* Will also disable the calculation of global coordinates for
/* that sonar if data logging of global data is not enabled.

void disable-linearjitting(n)
int n;

sonarjableln].fiiting = 0;
if (sonarjabenj.fietype~l1 0) sonar...tablefnj.global =0;
--service-.flag;

/* Procedure: enable...data..jogging(n,filetype,filenumber)
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/* Description: causes the background system to log data for sonar (n)

/* to a file (filenumber). The data to be logged is specified by an

/* integer flag (filetype). A value of 0 for filetype will cause raw
/* sonar data to be saved, 1 will save global x and y, and 2 will

/* save line segments. The filenumber may range between 0 and 3 for

t* each of the three types, providing up to 12 data files. Example:

enabledatajlogging(4,1,0);
1* will cause raw data from sonar #4 to be saved to file 0, while:

enabledatajlogging(7,2,0);
/* will cause segments for sonar #7 to be saved to file 0.

/" Function increments the serviceflag.
1*

void enabledatalogging(n,filetype,filenumber)

int n, filetype, filenumber;
{

if (filetype == 1) sonarjtable[nJ.global = 1;

sonar._tablelnl.filetype[filetype] = 1;
sonar..table[nl.filenumber[filetype] = filenumber;
++service_flag;

/,
/* Procedure: disablejdata-logging(n,filetype)
/.

/* Description: causes the background system to cease logging data of a
/* given filetype for a sonar n. Decrements the service-flag.
/,

void disabledata logging(n,filetype)

int nfiletype;

if ((filetype == 1) && (sonar_table[n].fitting == 0)) sonar-table[n].global = 0;

sonar_table[n].filetype[filetype] = 0;
--service flag;

}

/* Procedure: servesonar(x,y,t,ovfldatal,data2,data3,data4,group)

/6
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/* Description: this procedure is the "central command" for the

/* control of all sonar related functions. It is linked with
/* the ihsonar routine and loads sonar data to the sonar_table

/* from there. It then examines the various control flags in the

/* sonartable to determine which activities the user wishes to
/* take place, and calls the appropriate functions. This procedure

/* is invoked approximately every thirty milliseconds by an

/* interrupt from the sonar control board.
/,

void servesonar(x,y,tovfldaa4,data3,data2,datal,group)

double x,yt;
int ovfl,data4,data3,data2,datal,group;
{

int i;
int data[4];
int ovflmask = 8;

data[O] = data I;

data[l] = data2;
data[2] = data3;
data[3] = data4;

for (i = 0; i < 4; i++, ovflmask/= 2)

if (ovfl mask & ovfl)

sonartable[grouparray[group] [i]].d = -1.0;

else if (data[i] < 100)

sonartable[grouparray[group][i]].d = 0.0;
else sonarjtable[group-array[group][i]].d = (floa)data[i] / 10.0;

sonar table[group-array[group][il.x = x;

sonarjtablegroup-array[group][i]].y = y;
sonar_table[group-array[group][i]].t = t;
sonarjtable[group-array[group] [i]].update = 1;

if (servicejflag != 0)

for (i = 0; i < 16; i++)

if (sonartable[i].update == 1)
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if (sonar..table[i].global . 1)
calculate-global(i);

if (sonar-table[i].fitting == 1)
linear_fitting(i);

if (sonarjable[i.filetype[0] == 1)
log-data(i,1 ,sonartable[i].filenumber[0],0);

if (sonarjtable[i.filetype[1] == 1)
log.data(i,2,sonarjtable[i].filenumber[ 1],0);

sonar-table[i].update =0;

I
1 4

/* Procedure: get-segment(n)
1*
/* Description: returns a pointer to the oldest segment on the linked
/* list of segments for sonar n; i.e. the record at the head
/* of the linked list. It is destructive, thus subsequent calls
/* will return subsequent segments until the list is empty. This is
/* accomplished by first copying the contents of the head record
/* into a temporary record called segstruct and then freeing the
/* allocated memory for the head record. The pointer returned is
/* actually a pointer to this temporary storage. If geLtsegment is
/* called on an empty list a null pointer is returned.

LINE.SEG *get-segment(n)
int n;
{

LINESEG *ptr
imt index;

index = segiisthead[n];
if (index = -1)

ptr - NULL;
else

ptr = &seg._ist[n] [index];
segisLhead[n] = (index < 4) ? (index + 1): 0;
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I

return ptr;

1*

/* Procedure: getcurrentsegment(n)

/* Description: returns a pointer to the segment currently under
/* construction if there is one, otherwise returns null pointer.
/* This is accomplished by calling end-segment, copying the data

/* into segstruct and then returning a pointer to segstruct. The

/* memory allocated by endsegment is then freed.
1*

LINE_SEG *get-current-segment(n)
int n;

LINESEG *ptr;

if (segment.data[n].rst > 1)
ptr = endsegment(n);

else ptr = NULL;
return ptr;

/* Procedure: set_parameters(cl,c2,c3)
1,
/* Description: allows the user to adjust constants which control

/* the linear fitting algorithm. Cl is a multiplier for standard
/* deviation and C2 is an absolute value; both are used to
/* determine if an individual data point is usable for the

/* algorithm. C3 is a value for ellipse thinness; it is used to
/* determine the end of a segment. Default values are set in main.c

/* to 3.0, 5.0, and 0.1 respectively.
p.

void set..parameters(cl ,c2,c3)

double clc2,c3;
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CI = cl;
C2 = c2;
C3 = c3;

}

1*
f* Procedure: enable.interupt_operationO

/* Description: places sonar control board in interrupt driven mode.
1*

void enable-interrupt operationo

*BIM-ptr = *BIM-ptr I OxlO;
I

/* Procedure: disable-interrupt-operationo
1,
/* Description: stops interrupt generation by the sonar control
/* board. A flag is set in the status register when data is ready,
/* and it is the user's responsibility to poll the sonar system
/* for the flag.
'I,

void disableinterruptoperation0
t

*BIM-ptr = *BIM-ptr & Oxef;

/* Procedure: calculate-global(n)
1*

/* Description: this procedure calculates the global x and y coordinates
/* for the range value and robot configuration in the sonar table.
/* The results are stored in the sonar table.
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void calculate_global(n)
int n;
{

double Ix, ly, gt, range, phi, axis, offset;

gt = sonarjtable[n].t;
range = (floaOsonartableAn.d;
phi = sonarjable[n].phi;
axis = sonar_table[n].axis;
offset = sonartable[n].offset;

if (range = -1) range = 9999;
Ix = sonar-able[nJ.x + (cos(gt + phi) * offset); /* global x position of sonar */
ly = sonarjable[n].y + (sin(gt + phi) * offset); /* global y position of sonar */
sonar_table[n].gx = Ix + (cos(gt + axis) * range); /* global x position of range */
sonartable[n].gy = ly + (sin(gt + axis) * range); /* global y position of range *I

/* Procedure: linearfitting(n)
1*

/* Description: this procedure controls the fitting of range data to straight
/* line segments. First it collects three data points and establishes
/* a line segment with it's interim data values. After the segment
f* is established, the procedure tests each subsequent data point
/* to determine if it falls within acceptable bounds before calling
/* the least squares routine to include the data point in the line
/* segment. After inclusion of the data point the segment is again
/* tested to ensure the entire set of data points are linear enough.

/* If any of the tests fail, the line segment is ended and a new one
/* started. The completed line segment is stored in a data structure
/* called segment, and segments are linked together in a linked list.
/,

void linear.fitting(n)
int n;

int sgmp, rst;
double theta, r, sigma, delta;
LINESEG *finished-segment;

theta = segmentdata[n].theta;
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r =segmeautjdaia[n].r.

sgmp = segmenLdata[nl.sgmp;
rst = segmenLdata[nI.rst;
if (rst, =0)

senetdt(liixsmp oa tben~x
segmenLdata[nJ.inity[sgmp] = sonarjtable[n].gx;

segmentdata[nJ.sgmp += 1;
if (sgmp == 2)

start-segment(n);
segment-data~nl.rst = 1;

else

sigma = segmenLdata[n.sgm..delta.sq /(double) sgmp;
delta = sonar-tablefrn].gx *cos(theta) + sonarjable[ni.gy *sin(theta) - r;
if (fabs (delta) < (sigma C 1l)) 11 (fabs (delta) < C2))

switch (rst)

case 1:
segmentLdatan).sgmp += 1;
add-to-line(n, sonar-table~n].gx, sonarjtable[n] .gy);
if (segment data[n].rst == 1)

segment..data[nI .rst = 2;

else if (segment data[n].rst == 5)

reset-accumulazors(n);
segmenLdata[n].initx [01 = segmentjiata[n].initx[1];
segmenLdata[n].inity[Oj = segment.data[nj.inityf 1];
segment-data[nI.initx[ 11 = segment-dataln].initx[2];
segmenLdata~nJ.inity[11 = segmentLata[n.inity[21;
segmenLdata[nI.initx[2J = sonar-table[n].gx;
segmentdata[n].inity[2j = sonarj-abletnl.gy;
segmenLdata[nj.sgmp = 3;
start-segment(n);
segmenLdata[n].rst = 1;

break;
case 2:
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segmen -datalnl.sgmp += 1;
add_to_linie(n, sonarjtable[nI.gx, sonar-table~nl.gy);
if (segment-data[n].rst == 5)

finished-segment = en&..segment(n);
build-list(finished.segmenh, n);
reset_accumulators(n);
segment-laa~nl.initx[O] = sonar -able[nI.gx;
segment-data[n.inity[OI = sonarjable[n].gy;
segmenLdata~nl.sgmp = 1;
segment-data[nI.rst = 0;

break;
S case 3:

segmentcdata[n].initxll = sonar - able[n].gx;
segment-data[n] .inity[ 11 = sonarjtable[nI.gy;
segment-data[n].rst =4;,
break;

case 4:
segment-data[n] .sgmp += 1;
add-to-line(n, segment data[n] .initx[ 11, segment-data[n].inity[ 1]);
if (segment data[n].rst == 5)

finished-segment = end...segment(n);
build-list(finished..segment, n);
reset-accumulators(n);
segmenLdata[nl .initx[21 = sonar-able~n].gx;
segmentdatafn].inity[2] = sonarjableln].gy;
segment -data[n].sgmp = 3;
start-segment(n);
segment-data[n].rst = 1;

else

I
segmentjlata~nI .sgmp += 1;
add_to._line(n, sonarjable[n].gx. sonar-table[nI.gy);
if (segmentdata~n].rst == 5)

fir'ished..segment = end ..segmnent(n);
build-list(finishec~segment, n);
reset~accumulators(n);
segmenLdata[n.anitx[0] = sonarjable[nI.gx;
segment-data[n].inity[0I = sonarjable[nI.gy;
segment-data[n].sgmp = 1;
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segment-datatnJ.rst = 0;

else segment..ata[n] .rst =2;

break;

else

switch (rst)

case 1:
case 2:

segmenLdata[n].initx[O] = sonar -able[nI.gx;
segment-datan.ility[O) = sonar-table[n] .gy;
segmentAatafn].rst = 3;
break;

case 3:
finished-segment = end-segment(n);
buildjist(finished-segment, n);
reset-accumulators(n);
segmenLdata[n].initx[ 1] = sonar -able[n].gx;
segment.data[n] .inityl1 = sonar-table[n] .gy;
segmentdatatn].sgmp = 2;
segmenLdatal].rst = 0;
break;

case 4:
finished-segment = end-segment(n);
buildjist(finishedsegment, n);
reset~accumulators(n);
segment-data[n].initx[21 = sonar -able[n].gx;
segment-data[nI .inity[2] = sonar-table[n] .gy;
segmenLdata[nl.sgmp = 3;
start-.segment(n);
segment-datafn.rst = 1;
break;

/* Procedure: start-segment(n)
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f* Description: this procedure establishes a new line segment with the three
/* data points contained in segment-data[nI.init(x and y). It writes
/* the appropriate data to the interim values in segment-data[nI.

void startsegment(n)
int n;

double theta, r, mux, muy, muxx, muyy, muxy, sds;
mnt ij;

segmentldata[nI.startx = segment-data[n].initx[O];
segment-data[nI .starty = segment-data[nI.inityllOl;
segmenLdata[n].endx = segmentjlata[n].initx[21;
segment-data[n] .endy = segment-data[n].inity [2];
for (i = 0; i < 3; ++i)

segmentdatallnl.sgmx += segment -data[n].initx[i];
segment-data[nI.sgmy += segment-data[n.inity~i];
segment-data~nI.sgmx2 += SQR(segmentdata[n].initx[i]);
segmentdata[n].sgmy2 += SQR(segment..data[n].inity[i]);
segment..datalnl.sgmxy += segmentjlata[nJ .initxllil * segment-datafnl.inityti];

mux = segment-data[n].sgmx/3.0;
muy = segment - ata[n].sgnyf3.0;
muxx = segment..datalnl .sgmx2 - SQR(segiaientdata[n].sgmx)13.0;
muyy = segment-data[nl.sgmy2 - SQR(segment-data[n.sgmy)3.0;
muxy = segment...data~n].sgmxy - (segment-data[n].sgmx * segment-datatn].sgmy)3.O;
theta = (atan2( -2.0 * muxy, (muyy - muxx))) / 2.0;
r = mux * cos(theta) + muy * sin(theta);
for 0 =0; j <3; ++j)

sds += SQR(segment -data[nI.initxU] - mux) * SQR(cos(theta));
sds; += SQR(segmenLdata[n].inityUl - muy) * SQR(sin(theta));
sds += 2.0 * (segment-data[n.initxU]j - mux) * (segment..data~nI.inityuj] - muy)

*cos(theta) * sin(theta);

segmentdata[nJ.sgmj.eltasq = sds;
segment-data[nl.theta = theta;
segmenLdatatnI.r = r;
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/* Procedure: add_tojline(n, x, y)

/* Description: this procedure calculates new interim data for the line segment
/* and stores it in segment -datafnl. It also changes thle end point values to
f* the point being added.

void add tojine(n,x,y)
int n;
double x, y;,

double sgmp;
double m-major, mmnor, d-major, d-minor, theta, r;
double mux, muy, muxx, muyy, muxy, sds;

sgmp = (double)segment -data[n].sgmp;
segmnenc...data[n].sgmx += x;
segmentdata[n].sgmy += y;
segment-daza[n] .sgmx2 += SQR(x);
segment..data[n].sgmy2 += SQR(y);
segment-datani .sgmxy += x * y

mux = segment data~nl.sgmx / sgmp;
muy = segment-data[n].sgmy / sgmp;
muxx = segment data[n].sgmx2 - SQR(segment-data[n].sgmx) / sgmp;
muyy = segment..data[n].sgmy2 - SQR(segmentjlatafnl.sgmy) / sgmp;
muxy = segment data[n].sgmxy - (segment-data[nj.sgmx*segment-data[n].sgmy) /sgmp;

m-major = (muxx + muyy)/2.0 - sqrt((muyy-muxx)*(muyy-muxx)/4.O + SQR(muxy));
m-minor = (muxx + muyy)t2.0 + sqrt((muyy-muxx)*(muyy-muxx)4.O + SQR(muxy));

d-major = 4.0 * sqrt(fabs(m..minor/sgmp));
d-minor = 4.0 * sqrt(fabs(mmajor/sgmp));

if ((d..minor / dmajor) < C3)

theta = (atan2( -2.0 * muxy, (muyy - muxx))) / 2.0;
r = mux * cos(theta) + muy * sin(theta);
sds += SQR(x - mux) * SQR(cos(theta));
sds += SQR(y - muy) * SQR(sin(theta));
sds; += 2.0 * (x - mux) * (y - muy) * cos(theta) * sin (theta);
segmentdata[n].sgm delia_sq += sds;
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segmfen~data~n.theta = theta;
segrnenLdata[n].r = r,
segment data[nl.endx = x
segmentjlata[nl.endy = y
segment-.datali.d major = d major
segment-data[nI.d-minor = d-mor;

I

t* Procedure: end-segment(n)

/* Description: this procedure allocates memory for the segment data structure,
/* loads die correct values into it and returns a pointer to the structure.

LINE_-SEQ *end_segment(n)
int n;

LINE-SEG *seg-ptr;
double startx, starty, endx, endy, delta, theta, r, length;

seg-ptr = &segstruct;

startx = segment -datal.startx;
starty = segmenLdata[nI.starty;
endx = segment data[n].endx;
endy = segment datallnl.endy;
theta = segment Idata[nI.theta;

* r =segmentjlata~n].r;

delta = startx * cos(theta) + starty * sin(theta) - r;
startx = startx - (delta * cos(theta));
starty = starty - (delta * sin(theta));
delta = endx * cos(dieta) + endy * sin(theta) - r;
endx = endx - (delta * cos(theta));
endy = endy - (delta * sin(dieta));
length = sqrt(SQR(startx - endx) + SQR(starty - endy));

seg-ptr->headx = startx;
seg..ptr->heady = starty;
seg..ptr->tailx = endx;
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seg-ptr->taily = endy;
seg-.ptr->phi = theta;
segptr->r = r
seg-ptr-Aength = length;
seg-ptr->dmajor = segmnentLdata[nI.d major;
seg..ptr->dminor = segmenLdata[nI.d..minor;
seg-.ptr->sonar = n;

return seg-.ptr;

/* Procedure: reset~accumulators(n);

f* Description: resets the accumulative values in segmentdata[nI (sgmx, sgmy,
/* sgmx2, sgmy2, sgmxy) to zero.

void reset accumulators(n)
int n;

segmenLdatal].sgmx = 0.0;
segmentdatafnJ.sginy = 0.0;
segmentdata[nJ.sgmx2 = 0.0;
segmnentdataln].sgmy2 = 0.0;
segmnent-dalafnl.sgmxy =0.0;

f* Procedure: build-list(ptr, ni);

f* Descripio: this function accepts a pointer to a segment data structure and

I* a sonar number, and appends the segment structure to the tail of a linked
/* list of structures for that sonar.

void build...ist(ptr, n)
int n;
LINE-SEC *ptr
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int next;

if (segjlistjail[n] == -1) seg~listhead[nJ = 0;
next = (segjlist -taiI[nI < 4) ? ++seg-jistjtailtn] 0;
if (next =- seg...list-head[n])

seg-fist-headtn] = (seg-.lisLhead[nI < 4) ? ++segjlist-head[n] 0;
segjisanll[next] = pr
if (sonarj--ablel.filetype[2] == 1)

log..data(n,3,sonar-table[nl.filenumber[2],next);

/* Procedure: log-data(n, type, filenumberji)

t" Description: this procedure causes data to be written to a file. The filenumber
/* designates which "column" (0,1,2, or 3) of a two dimensional array for
f* that type of data is used. The data array and a counter for each column
f* forms the data structure for each type. The value of i is used to index

/~the seg-list array for storing line segments.

void Iog..data(n, filetype, filenumber,i)
mnt n, filetype,filenumber,i;

mnt count,intervalnext;

switch(flletype)

case 1:
count = raw-data log[filenumberl.count;
interval = sonar-table[n].interval;
if ((count < MAXRAW) && !(count % interval))

next = raw-datajlog[filenumberl.next;
raw-dat..log~flenumber.daray~next = sonar..table[n].d;
raw-.dara~jog[fllenumber] .xarray[next] = sonar..table(n~x
raw..datajlog[filenumber] .yarrayl next] = sonar _table[nJ.y;
rawjlata-jog[filenumberl .iarray[nextI = sonar..table[n].t;,
rawdatajog[filenumber] .next += 1;

rawjlatajogfilenuber.count += 1;
break;
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case 2:
count = global-datalog[filenumber].count;
interval = sonarjtable[n].interval;
if ((count < MAXGLOBAL) && !(count % interval))

next = globaljdatalog[filenumber].next;
global datalog[filenumberj.xarray[next] = sonar_tablefn].gx;
global-datalog[filenumber].yarray[next] = sonarjtable[n].gy;
global datalog[filenumber].next += 1;

I
global-daajog[filenumber].count += 1;
break;

case 3:
count = segmentdata_log[filenumber].count;
if (count < MAXSEGMENT)

I
segmenLdata Iog[filenumber].arraycount] = seglist[n][i];

I
segment datalog[filenumber].count += 1;
break;

I

/
**** ** **** ** ****** ****** * **** ** * *** ** ****** *** *** ******************************* *

/,

/* Procedure: setIog_interval(nd)

/* Description: this procedure allows the user to set how often the sonar system
/* writes data to the raw data or global data files. The interval d is stored
/* at sonartable[n], and one data point will be recorded for every d data
/* points sensed by the sonar. Default value for interval d is 13, which for
/* a speed of 30 cm/sec and sonar sampling time of 25 msec should record a
/* data point every 10 cm.
/*
/

* **************** *** ** ** * **** * ***** *** ** ** * *** ** * ****** *** *** **** * **** ** * *** ** ****

void setiog_interval(n,d)
int nd;

sonar_table[n].interval = d;
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/
* ***** * *** ** * *** *** ***** ** *** * * *** ** ** ***** *** * ****** *** *** *** ** * **** *** ** **/

/,

/* Procedure: wait-until(variablerelation,value)
/*

/* Description: this procedure will delay it's completion (and thus the continuance
/* of the program it's embedded in) until the variable achieves the relation with

I* the value specified. For example, presume the robot is traveling along the x
/* axis. If the user wants the robot to begin redording sonar data when the x
/* position of the robot exceeds 500 cm., he would insert this command after the
/* move command:

waituntil(XGT,500.0);
/* enable sonar(sonar number);
/* The variable are predefined as X, Y, A and DO through D1I, and correspond to
f* the robot's current x position, y position, theta, and range from sonars 0
/* through 11. Relations are predefined as GT, LT and EQ corresponding to greater
/* than, less than and equal to. Value may be any numlber expressed as a double

/* or the predefined values PI, HPI, P134, P14, or DPI.
/.
/

void waituntil(variable,relation,value)
int variablerelation;
double value;
t

double *ptr;

double theta;
int testitem;

if ((variable == 14) && (relation == 17)) test = (int)(1000.0 * value);

else if (relation = 17) test = (int)(value);

switch (variable)

I
case 0:
case 1:
case 2:

case 3:
case 4:

case 5:
case 6:
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case 7:
case 8:
case 9:
case 10:
case 11:

ptr = &sonartable[variablel.d-

break;
case 12:

ptr = &curx;
break;

case 13:
ptr = &cur-y;
break;

case 14:
theta = 1000.0 * curt;

ptr = &theta
break;

I
switch (relation)

I
case 15:

do(
item = *ptr;
I)

while (item <= value);
break;

case 16:
do(

item = *ptr;

I
while (item >= value);

break;
case 17:

do(
item = (int)*ptr;

while (item != test);

break;

8

/

*/
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/* Procedure: xfer _raw-to-host(filenumber,filename)

/* Description: this function allocates memory for a buffer and then converts a raw data
/* log file to a string format stored in the buffer. It then calls host-xfer to send
/* the string to the host. When that transfer is complete, it frees the memory it
J* allocated for the buffer. Filename must be entered in double quotes (dumpraw"
/* for example).

void xfer-raw-to-host(filenumber,filename)
int filenumber;,
char *filename;

char *rbuffer;
char *start;
mnt i,cj;

= raw..datajlog[filenumber].next;
c =20 + (i * 33);
rbuffer = malloc(c);
start = rbuffer;
for 6=0; j<i; j++)

pinflxrwdtlofleubrdary] bfe)
print-flex(raw...ata-log[filenumberl.xarrayUj], rbuffer);
print...flex(raw...datalog[filenumber].xarrayUl, rbuffer);
printjlex(raw..daa-jog[filenumber.yarrayUl, rbuffer);

ni-flex(rbuffer);

putb(5'NO'rbuffer);
rbuffer = start;
host_xfer(rbuffer,filename);
free(rbuffer);
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f* Procedure: xfer~global_ to_host(filenumber,filename)

f* Description: this function performs the same function as xfer-rawtohost, but for
f* global data vice raw data.

void xfer~lobal to host(flenumber,filename)
int filenumber;
char *Fdename;

char *gbuffer;
char *star;

int icj;

i global .datalog[filenumber].next;
c 20 +(i * 17);
gbuffer = malloc(c);
start = gbuffer;
for 0=0; j<i; j++)

printjlex(globaldatalog[filenumber.xarayfj], gbuffer);
print..flex(global-datalog[filenumberj .yarray U], gbuffer);
n]-flex(gbuffer);

putb'O', gbuffer);
gbuffer = start;
host_xfer(gbuffer,filename);
free(.gbuffer);

/* Procedure: xfer_segmento.host(filenumber,filename)

1* Description: this function performs the same function as xferjrawjo...hos, but for
1* segment data vice raw data.

84



void xfer...segment-o...host(filcnumber,filename)
int filenumber;
char *flnae

char *segbuffer;
char *start;

int icj;

i =segmentjlata..log[filenumber].count;

c =20 + (i * 77);
segbuffer = malloc(c);
start = segbuffer;
for 0j=0; j~ci; j++)

print.flex(segment dataIog[filenumber].arrayU].headx, segbuffer);
prinLflex(segment data_logilenumber] .anrayU].heady, segbuffer);
printflex(segment dataIog[filenumber].arrayUjI.tailx, segbuffer);
prinLflex(segment dataIog[filenumber].arrayojI.raily, segbuffer);
ni-flex(segbuffer);
print-flex(segment data_Iog~filenumberl.arrayUj].phi, segbuffer);
print..flex(segment dataIogllfilenumber].arrayUl.r, segbuffer);
printjlex(segment -dataI og[tilenumber].arrayUjI.Iength, segbuffer);
printflex(segment-dataIog[filenumber].arrayUj].dmajor, segbuffer);
print~flex(segment dataIog~filenumbrI.arrayU].dminor, segbuffer);
ni-flex(segbuffer);

putb(O' ,segbuffer);
segbuffer = start;
host-xfer(segbuffer,filenanie);
free(segbuffer);

/* Procedure: host-xfer(buffer,filename)

/* Description: this function transfers a data string fromn the buffer to the host. Not a
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/* user function; is called by data conversion functions such as xferrawtohost.
/* User would call the xferraw-tohost (or equivalent for global or segment data)

/* to download data from the roboL
1*
/

*1

void host xfer(buffer,filename)

char *buffer,
char *filename;

i.port(HOST, 9600, 0, 0, 0);
rprintff(2\125 connect cable and keyin\' \"");

while(r-getchar0 !=' ');

putstrC'",HOST);
i-.port(HOST, 9600, 0, 0, 1);
r..printf('M2\15 ready for dump ");

while(rgetcharo != 'g');

putstr("ytof ",HOST);
putstr(filename,HOST);

putstr(" w Nn",OS);
while(rgetcharO != );

r-printf("dumping ");

putstr(buffer,HOST);
putb(4',HOST);
putb('\4',HOST);

r-printf("\777");
return;

/

/,

/* Procedure: finishsegments(n)
/.

/* Description: this function completes segments at the end of a data run. Necessary

/* because the linear fitting function only terminates a segment based on the
/* data - it has no way of knowing that the user has stopped collecting data.

/8
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void finish...segments(n)

LINE_SEG *fin ished segment;

finished.segment = endsegment(n);
build-list(finished..segment, n);
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APPENDIX B - INTERRUPT HANDLER CODE

########################################################################

# Procedure: ihsonar

# Description: Interrupt handler for the sonar control board. Loads
# group number, contents of the four data registers, the overflow

# word, current theta, current y and current x onto the stack in
# that order. It then calls the servesonar function in sonar.c

# which places the data in the appropriate data structures. Overflow
# word is simply a four bit concatenation of the overflow bits in
# the individual data registers. Data register contents are

# masked to allow only the actual range data.

########################################################################

.globl _ih sonar

status = 0xffff83f9
datal = 0xffff83f0
stop = Oxffff83f8

.text

_ih sonar:

moveml d0-d7IaO-a5, sp@- Isave register contents betore use
link a6, #-184 Istack space for coprocessor status

fsave a6@(-184) Isave coprocessor status
fmovemx fp0-fp7, _fpx-save-sonar Isave fp registers

fmovel fpcr, _fpcr_savesonar Isave fp control register
fmovel fpsr, jpsrsavesonar Isave fp status register

fmovel fpiar, _fpiasavesonar Isave fp iaddr register

clrl dO
movl #status, aO load address of status register
movb aO@, dO Iload status register into dO
andl #OxOO000018, dO lextract group # from status

Isrl #3, dO Ishift group number over to the right

movl dO, sp@- Ipush group # onto stack
cirl d2
movl #datal, aO Iload address of data register #1

xferdata:
movw aO@, dl Imove register contents into dl
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movi dl, sp@- Ipush dl onto stack
andl #OxOOOOOfff, sp@ Imask out all but last twelve bits
IsIl #1, d2 Ishift overflow word left 1 bit
andl #0x00008000, dl lextract bit 15 of register (ovfl)
tstl dl Itest for overflow
beq gooddata lif no overflow branch
orl #1, d2 Isets overflow word lsb if overflow

gooddata:

addql #2, aO lincrement address for next register
cmpl #stop, aO Istop when address is ffff83f8

bne xferdata Icontinue data transfer
movI d2, sp@- Ipush overflow word onto stack
movI _cur__t+4, sp@- Ipush theta onto stack. Two pushes
movi _curt, sp@- I to xfer 64 bit data

movl _cur.y+4, sp@- Ipush current y onto stack

movl _cury, sp@-
movi _cur x+4, sp@- Ipush current x onto stack
movi _cur x, sp@-

jsr _servesonar Ilink to C routines

addl #48, sp Iremove parameters from stack
fmovel _fpiasave sonar, fpiar Irestore fp iaddr register
fmovel _fpsr_.save..sonar, fpsr Irestore fp status register

fmovel _fpcrsave-sonar, fpcr Irestore fp control register
fmovemx fpxsave sonar, fpO-fp7 Irestore fp registers

frestore a6@ (-184) Irestore coprocessor status

unlk a6 Iclear up stack
moveml sp@+, dO-d7/aO-a5 Irestore registers

rte
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APPENDIX C - TEST PROGRAMS

1. Operating Individual Sonars

read individual sonars
August 10, 1991 by Sherfey

#include "mml.h"

user()

int n,i,d;

i= 1;

r-printf("\12\15 input sonar no.");
n=getint(CONSOLE);
enable-sonar(n);
do

for 0i=0; i<20; i++) wait-sonar(n); /*produces a range every half second*/
d = (int)sonar-table[n].d;
if (d < 0) r-printf(MZ'2\15 Overranged");
else

r-printf('\1 2\1 5");
r~printfi(d);

wbile(1==1);
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2. Manipulating Multiple Sonars

manipulate sonars
August 12, 1991 by Sherfey
** * * ***** * ***** ***** * *** **** * *********** ***** ** ** ****

#include "mml.h"

usero
{

int n,m,ij,k,l,s,d,x;

i=l;

j=1;
k=20;

do
{

switch (j)

I
case 1:

r-printf('\12\15 input number of sonar to enable: ");

n=getint(CONSOLE);

enable-sonar(n);
break;

case 2:
rprintf("\12\15 input number of sonar to disable: ");

m=getint(CONSOLE);

disable-sonar(m);
break;

case 3:
r-prinf("12\1 5 input number of wait cycles: ");

k=getint(CONSOLE);
break;

}

do
{

for (s--O; s<16; s++)
{
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if (enabled_sonars[s] == 1)
I

for (i=O; i<k; i++) waitsonar(s);

d = (int)sonar table[s].d;

r-printf(" ");
r_printfi(s);

r..printf("f');

r-printfi(d);
I

)
r-printf('\ 2\1 5");

x = (rgetcharO 1='')? 1 : 0;

while(x);

r.printf('\12\1S\15 0 to quit, 1 to enable, 2 to disable, 3 to change wait :

j=getint(CONSOLE);

while(j != 0);

3. Test Runs In Corridor

/* Gather global and segment data on straight run of 6 meters

/* by Sol Sherfey August 29, 1991

#include "mml.h"

user()

POSTURE pl, p2, p3;

def_posturc(0.0, 0.0, HPI, &pl);
def_posture(0.0, 600.0, HPI, &p2);
def posture(0.0, 650.0, HPI, &p3);

set-parameters(2.0, 2.0, 0.08);
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set-logjinterval(7,5);
set-rob(&pl1);

enable-..sonar(7);
mark motionO;
move(&p2);
move(&p3);
enable-linear -fitting(7);
enable-data-logging(7, 1,0);
enable~datajlogging(7,2,0);
wait-motiono;
disable..sonar(7);
finish-segments(7);
disable-linear -fitting(7);
disable-data-logging(7,2);
disable-data-logging(7, 1);
motor-on = NO;
xfer-global to host(0,"test.global8");
xfer-segmentto-host(0,"test-segment8");

4. Dynamic Test On Blocks (Non-Moving)

/* generate and record segments while rolling straight
/* for 1000 cm and moving the barrier
/* by Sol Sherfey 14 August, 1991

#include "mmld.h"

extern LINESEG *end-segmento;

user()

POSTURE p, p1, p2;
int i,c,z,n;
LINESEG *tflnishej-segment;

reset~accumulators(7);
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set_rob(def..posture(0.0, 0.0, 0.0, &P)); /* Initial posture ~

enable..sonar(7);
move(defposture(1000.0, 0.0, 0.0, &plI));
enablejlinear...fitting(7);
enable-data-logging(7,2,0);
stop(def-posture(1050.0, 0.0, 0.0, &p2));
do

z = (int)sonar-table[7].x;

while (z < 1000);
disable-sonar(7);
finishec.Lsegment = end-segment(7);
build-ist(finished-segment,7);
disablejdata -logging(7,2);
r...prntf("\l 2\1 5\1 5");
c = segment-datailog[0] .count;
r-prntf("count=
r..printfi(c);
r..printf(" x posit=
r...pnintfi((int)sonar _table[7J.x);
r...printf(" y posit = )
r _printfi((int)sonar table[7].y);
r...printf(" range =")

r...printf("\1 2\1 5\1 5");

for (0=0; ikc; i++)

r...printf(" hx
r...printfi((int)segment data-log[0I .array~il .headx);
r...printf(" by = 4)
r...printfi((int)segrnent dataIog[0I.array~il.heady);
r -printf(" tx =")

r-printfi((int)segment -data -log[01.array~il .tailx);
r..printf(" ty = 6)
r-printfi((int)segment data-log[01 .array~il .taily);
rprintf(" length
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r-printfi((int)segment -data -log [0].array[i] .length);
rprintf('\1 2\1 5");

5. Another Dynamic Test Program

/* generate and record segments while rolling straight
I* test the wait-until function
/* by Sol Sherfey 14 August, 1991

#include "mml.h"

extern LINESEG *end-segmento;

user()

POSTURE p, p I, p2,p3,p4;
int i,c,z,n;
LINE_SEG *finished_segment;

reset-accumulators(7);
set_rob(def-posture(0O, 0.0, 0.0, &p)); /* Initial posture ~
enable..sonar(7);
move(deLposture(300.O, 0.0, 0.0, &pl ));
enable-linear-fitting(7);
enable-data-logging(7,2,0);
waituntil(X,GT,300.O);
disable-data -logging(7,2);
disable-linear..fitting(7);
move(deLposture(400.0, 100.0,HPI,&p2));
move(def~posture(400.0,400.O,HPI,&p3));
enablejlinear -fitting(7);
enable-data-logging(7,2,0);
stop(deLposture(400.0, 450.0, HPI, &p4));
wait-until(Y,GT,400.O);
disable-sonar(7);
finished-segment = end-segment(7);
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buildJist(finished-.segment,7);
disable-data -logging(7,2);
r-printf("\l 2\1 5\1 5");
c = segmentdatajlog[OI .count;
rprintf("count
r-printfi(c);
r-.printfC' x posit=
rprintfi((int)sonar-able[71 .x);
r-printf(" y posit =")

rprintfi((int)sonar-able[7].y);
r-printf(" range =")

r printfi((int)sonar-table[7].d);
r..printf("\12\1 5\1 5");
for (i=O; ikc; i++-)

r-.printf(" hx
r...printfi((int)segment -data -log[OJ .array[i] .headx);
r...printf(" hy =")

r-printfi((int)segmnent -data -log[O] .array[i] .heady);
rprintf(" tx
r..printfi((int)segment dataIog[OJ.arrayfij.tailx);
rprintf(" ty =")

r.-printfi((int)segment-data~log[OI .array[i] .taily);
r-.printf(" length =")

r-printfi((int)segmnent -data-log[O] .array[i] .length);
r-.printf("\1 2\1 5");
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